【題目】如圖,是正方形ABCD的外接圓,點P在劣弧AB上(P不與A、B重合),DP分別交AO、AB于點Q、T,
在點P處的切線交DA的延長線于點E,劣弧BC的中點為F.
(1)問:何時F、T、E三點共線?請說明理由.
(2)求比值的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為的菱形
中,
.點
,
分別在邊
,
上,點
與點
,
不重合,
,
.沿
將
翻折到
的位置,使平面
平面
.
(1)求證:平面
;
(2)當與平面
所成的角為
時,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,短軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作兩條直線,分別交橢圓
于
,
兩點(異于
點).當直線
,
的斜率之和為定值
時,直線
是否恒過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的頂點為A,焦點為F.過F作直線l與拋物線交于點P、Q,直線AP、AQ分別與拋物線的準線交于點M、N.問:直線l滿足什么條件時,三直線PN、QM、AF恒交于一點?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,記這3人中“微信控”的人數為,試求
的分布列和數學期望.
參考公式: ,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.
方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.
方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.
(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;
(2)若某顧客獲得抽獎機會.
①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;
②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,點
在平面
內運動,使得二面角
的平面角與二面角
的平面角互余,則點
的軌跡是( )
A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A.已知隨機變量,若
.則
B.已知分類變量與
的隨機變量
的觀察值為
,則當
的值越大時,“
與
有關”的可信度越小.
C.在線性回歸模型中,計算其相關指數,則可以理解為:解析變量對預報變量的貢獻率約為
D.若對于變量與
的
組統計數據的線性回歸模型中,相關指數
.又知殘差平方和為
.那么
.(注意:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“斗拱”是中國古代建筑中特有的構件,從最初的承重作用,到明清時期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構架間,從枋上加的一層層探出成弓形的承重結構叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )
A. B.
C. 53 D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com