【題目】定義:如果函數f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足f′(x1)= ,f′(x2)
,則稱函數f(x)是[a,b]上的“雙中值函數”.已知函數f(x)=x3﹣x2+a是[0,a]上“雙中值函數”,則實數a的取值范圍是( )
A.( ,
)
B.(0,1)
C.( ,1)
D.( ,1)
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=
.
(1)寫出直線l的極坐標方程與曲線C的普通方程;
(2)若點 P是曲線C上的動點,求 P到直線l的距離的最小值,并求出 P點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的增函數y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數;
(3)若f(k3x)+f(3x﹣9x﹣4)<0對任意x∈R恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)經過點
,且兩焦點與短軸的一個端點的連線構成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線:
(
,
)交橢圓
于
、
兩點,試問:在坐標平面上是否存在一個定點
,使得以
為直徑的圓恒過點
.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①定義在R上的函數f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數
②定義在R上的函數f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數
③一個函數的解析式為y=x2 , 它的值域為{0,1,4},這樣的不同函數共有9個
④設函數f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號有(填上所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家規定個人稿費納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個人應得稿費(扣稅前)為( )
A.2800元
B.3000元
C.3800元
D.3818元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數 (m∈Z)的圖象關于y軸對稱,且在區間(0,+∞)為減函數
(1)求m的值和函數f(x)的解析式
(2)解關于x的不等式f(x+2)<f(1﹣2x).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com