【題目】如圖所示,在四棱錐中,平面
⊥平面
,
,
,
.
(Ⅰ)求證: ⊥平面
;
(Ⅱ)求證: ⊥
;
(Ⅲ)若點在棱
上,且
平面
,求
的值.
科目:高中數學 來源: 題型:
【題目】已知直線.
(1)若直線不經過第四象限,求的取值范圍;
(2)若直線交
軸負半軸于
,交
軸正半軸于
,求
的面積的最小值并求此時直線
的方程;
(3)已知點,若點
到直線
的距離為
,求
的最大值并求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
(1)函數的圖象關于點
對稱;
(2)函數在區間
內是增函數;
(3)函數是偶函數;
(4)存在實數,使
;
(5)如果函數的圖象關于點
中心對稱,那么
的最小值為
.
其中正確的命題的序號是___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】流行性感冒多由病毒引起,據調查,空氣月平均相對濕度過大或過小時,都有利于一些病毒繁殖和傳播,科學測定,當空氣月平均相對濕度大于65010或小于時,有利于病毒繁殖和傳播.下表記錄了某年甲、乙兩個城市12個月的空氣月平均相對濕度.
第一季度 | 第二季度 | 第三季度 | 第四季度 | |||||||||
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | |
甲地 | ||||||||||||
乙地 |
(I)從上表12個月中,隨機取出1個月,求該月甲地空氣月平均相對濕度有利于病毒繁殖和傳播的概率;
(Ⅱ)從上表第一季度和第二季度的6個月中隨機取出2個月,記這2個月中甲、乙兩地空氣月平均相對濕度都有利于病毒繁殖和傳播的月份的個數為,求
的分布列;
(Ⅲ)若,設乙地上表12個月的空氣月平均相對濕度的中位數為
,求
的最大值和最小值.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的一個焦點為
,點
在橢圓
上.
(Ⅰ)求橢圓的方程與離心率;
(Ⅱ)設橢圓上不與
點重合的兩點
,
關于原點
對稱,直線
,
分別交
軸于
,
兩點.求證:以
為直徑的圓被
軸截得的弦長是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學利用國慶節進行社會實踐,對的人群隨機抽取
人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳組的人數 | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補全頻率分布直方圖,并求,
,
的值;
(2)求年齡段人數的中位數和眾數;
(3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取3人作為領隊,求選取的3名領隊中年齡都在
歲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環.據此,某網站退出了關于生態文明建設進展情況的調查,調查數據表明,環境治理和保護問題仍是百姓最為關心的熱點,參與調查者中關注此問題的約占.現從參與關注生態文明建設的人群中隨機選出200人,并將這200人按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)求出的值;
(2)求這200人年齡的樣本平均數(同一組數據用該區間的中點值作代表)和中位數(精確到小數點后一位);
(3)現在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求這2組恰好抽到2人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】試用恰當的方法表示下列集合.
(1)使函數有意義的x的集合;
(2)不大于12的非負偶數;
(3)滿足不等式的解集;
(4)由大于10小于20的所有整數組成的集合.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com