精英家教網 > 高中數學 > 題目詳情

【題目】在10個球中有6個紅球和4個白球(各不相同),不放回地依次摸出2個球,在第一次摸出紅球的條件下,第2次也摸到紅球的概率為( )
A.
B.
C.
D.

【答案】D
【解析】解:先求出“第一次摸到紅球”的概率為:P1= =
設“在第一次摸出紅球的條件下,第二次也摸到紅球”的概率是P2
再求“第一次摸到紅球且第二次也摸到紅球”的概率為P= =
根據條件概率公式,得:P2= = ,
故選:D.
事件“第一次摸到紅球且第二次也摸到紅球”的概率等于事件“第一次摸到紅球”的概率乘以事件“在第一次摸出紅球的條件下,第二次也摸到紅球”的概率.根據這個原理,可以分別求出“第一次摸到紅球”的概率和“第一次摸到紅球且第二次也摸到紅球”的概率,再用公式可以求出要求的概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x3﹣x2 x,則f(﹣a2)與f(﹣1)的大小關系為(
A.f(﹣a2)≤f(﹣1)
B.f(﹣a2)<f(﹣1)
C.f(﹣a2)≥f(﹣1)
D.f(﹣a2)與f(﹣1)的大小關系不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有一個關于平面圖形的命題:如圖,同一個平面內有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為 .類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側棱,點分別為棱的中點, 的重心為,直線垂直于平面.

1)求證:直線平面

2)求二面角的余弦.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節水方案,對居民用水情況進行調查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數據按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,說明理由.

(3)估計居民月用水量的中位數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)(x∈R)滿足f(1)=1,且f(x)的導數f′(x)< ,則不等式f(x2)< 的解集為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數). 

(1)若在其定義域內單調遞增,求實數的取值范圍;

(2)若,且有兩個極值點, ),求取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列中, , , ,其中

求證:數列為等差數列;

, ,數列的前項和為,若當為偶數時, 恒成立,求實數的取值范圍;

設數列的前項的和為,試求數列的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知則下列結論中正確的是

A. 將函數的圖象向左平移個單位后得到函數的圖象

B. 函數圖象關于點中心對稱

C. 函數的圖象關于對稱

D. 函數在區間內單調遞增

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视