精英家教網 > 高中數學 > 題目詳情

設函數∈R),給出如下四個命題:①若c=0,則為奇函數;②若b=0,c>0,則方程只有一個根;③函數的圖像關于點(0,c)成中心對稱圖形;④關于的方程最多有兩個實根.其中正確的命題是

A.①③                  B.①④                    C.①②③                D.①②④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數)都在函數y=(
1
2
)x
的圖象上,且數列{an} 是a1=1,公差為d的等差數列.
(1)證明:數列{bn} 是等比數列;
(2)若公差d=1,以點Pn的橫、縱坐標為邊長的矩形面積為cn,求最大的實數t,使cn
1
t
(t∈R,t≠0)對一切正整數n恒成立;
(3)對(2)中的數列{an},對每個正整數k,在ak與ak+1之間插入3k-1個3(如在a1與a2之間插入30個3,a2與a3之間插入31個3,a3與a4之間插入32個3,…,依此類推),得到一個新的數列{dn},設Sn是數列{dn}的前n項和,試探究2008是否為數列{Sn}中的某一項,寫出你探究得到的結論并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列個命題:
①若函數f(x)=asin(2x+
π
3
+?)(x∈
R)為偶函數,則?=kπ+
π
6
(k∈Z)

②已知ω>0,函數f(x)=sin(ωx+
π
4
)在(
π
2
,π)上單調遞減,則ω的取值范圍是[
1
2
,
5
4
]

③函數f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,則f(x)的解析式為f(x)=sin(2x+
π
3
)

④設△ABC的內角A,B,C所對的邊為a,b,c,若(a+b)c<2ab;則C>
π
2

⑤設ω>0,函數y=sin(ωx+
π
3
)+2
的圖象向右平移
3
個單位后與原圖象重合,則ω的最小值是
3
2

其中正確的命題為
①②③⑤
①②③⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

已知[x]表示不超過x的最大整數(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x].給出如下命題:
①使[x-1]=3成立的x的取值范圍是4≤x<5;
②函數y={x}的定義域為R,值域為[0,1];
{
2012
2013
}+{
20122
2013
}+{
20123
2013
}+…+{
20122012
2013
}
=1006;
④設函數f(x)=
{x}x≥0
f(x+1)x<0
,則函數y=f(x)-
1
4
x-
1
4
的不同零點有3個.
其中正確的命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個判斷:
①定義在R上的奇函數f(x),當x>0時f(x)=x2+2,則函數f(x)的值域為{y|y≥2或y≤-2};
②若不等式x3+x2+a<0對一切x∈[0,2]恒成立,則實數a的取值范圍是{a|a<-12};
③當f(x)=log3x時,對于函數f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

④設g(x)表示不超過t>0的最大整數,如:[2]=2,[1.25]=1,對于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當x∈[
3
2
,2)時函數
C
x
8
的值域是(4,
16
3
]
;
上述判斷中正確的結論的序號是
②④
②④

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:設函數y=f(x)在(a,b)內可導,f'(x)為f(x)的導數,f''(x)為f'(x)的導數即f(x)的二階導數,若函數y=f(x) 在(a,b)內的二階導數恒大于等于0,則稱函數y=f(x)是(a,b)內的下凸函數(有時亦稱為凹函數).已知函數f(x)=xlnx
(1)證明函數f(x)=xlnx是定義域內的下凸函數,并在所給直角坐標系中畫出函數f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據所畫下凸函數f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數時,定義函數N (n)表示n的最大奇因數.如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视