【題目】已知數列,
滿足:
,
,
.
(1)設,求數列
的通項公式;
(2)設,不等式
恒成立時,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)記,求證:函數
在區間
內有且僅有一個零點;
(2)用表示
中的最小值,設函數
,若關于
的方程
(其中
為常數)在區間
有兩個不相等的實根
,記
在
內的零點為
,試證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.現甲、乙兩警員同時從A地出發勻速前往B地,經過t小時,他們之間的距離為(單位:千米).甲的路線是AB,速度是5千米/小時,乙的路線是ACB,速度是8千米/小時,乙到達B地后原地等待,設
時,乙到達C地.
(1)求與
的值;
(2)已知警員的對講機的有效通話距離是3千米.當時,求
的表達式,并判斷
在
上的最大值是否超過3?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對定義在區間上的函數
和
,如果對任意
,都有
成立,那么稱函數
在區間
上可被
替代,
稱為“替代區間”.給出以下問題:
①在區間
上可被
替代;
②可被
替代的一個“替代區間”為
;
③在區間
可被
替代,則
;
④(
),
(
),則存在實數
(
),使得
在區間
上被
替代; 其中真命題有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線:
(
為參數),曲線
:
(
為參數).
(1)設與
相交于
,
兩點,求
;
(2)若把曲線上各點的橫坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是數列
的前n項和,滿足
,正項等比數列
的前n項和為
,且滿足
.
(Ⅰ) 求數列{an}和{bn}的通項公式; (Ⅱ) 記,求數列{cn}的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,D,E分別為AC,AB的中點,點F為線段CD上的一點.將△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如圖2.
(1)求證:DE∥平面A1CB;
(2)求證:A1F⊥BE;
(3)線段A1B上是否存在點Q,使A1C⊥平面DEQ?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com