精英家教網 > 高中數學 > 題目詳情

【題目】f(x)為定義在區間(﹣2,2)的奇函數,它在區間(0,2)上的圖象為如圖所示的一條線段,則不等式f(x)﹣f(﹣x)>x的解集為

【答案】(﹣2,﹣1)∪(0,1)
【解析】解:因為f(x)為奇函數,所以f(x)﹣f(﹣x)>x可化為f(x)+f(x)>x,即f(x)> x,
由奇函數的圖象關于原點對稱,可作出函數f(x)的圖象及y= x的圖象,如圖所示:

由圖象可求得f(x)= ,
解得x=1,由 解得x=﹣1,
結合圖象知f(x)> x,即(x)﹣f(﹣x)>x的解集為(﹣2,﹣1)∪(0,1).
所以答案是:(﹣2,﹣1)∪(0,1).
【考點精析】掌握奇偶性與單調性的綜合是解答本題的根本,需要知道奇函數在關于原點對稱的區間上有相同的單調性;偶函數在關于原點對稱的區間上有相反的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)當a=﹣ ,c= 時,求函數f(x)的單調區間;
(2)當c= +1時,若f(x)≥ 對x∈(c,+∞)恒成立,求實數a的取值范圍;
(3)設函數f(x)的圖象在點P(x1 , f(x1))、Q(x2 , f(x2))兩處的切線分別為l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求實數c的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ax2+bx是定義在[a﹣1,3a]上的偶函數,那么a+b的值是(
A.﹣
B.
C.
D.﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在[﹣4,4]上的奇函數f(x),已知當x∈[﹣4,0]時,f(x)= + (a∈R).
(1)求f(x)在[0,4]上的解析式;
(2)若x∈[﹣2,﹣1]時,不等式f(x)≤ 恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, , .

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x+ +lnx,a∈R.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在區間(1,4)內單調遞增,求a的取值范圍;
(3)討論函數g(x)=f′(x)﹣x的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩地相距200千米,汽車從甲地勻速行駛到乙地,速度不得超過50千米/時.已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數為0.02;固定部分為50(元/時).
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數,并指出定義域;
(2)用單調性定義證明(1)中函數的單調性,并指出汽車應以多大速度行駛可使全程運輸成本最小?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統計,2016年“雙十”天貓總成交金額突破1207億元.某購物網站為優化營銷策略,對11月11日當天在該網站進行網購消費且消費金額不超過1000元的1000名網購者(其中有女性800名,男性200名)進行抽樣分析.采用根據性別分層抽樣的方法從這1000名網購者中抽取100名進行分析,得到下表:(消費金額單位:元)

女性消費情況:

消費金額

人數

5

10

15

47

男性消費情況:

消費金額

人數

2

3

10

2

(1)計算,的值;在抽出的100名且消費金額在(單位:元)的網購者中隨機選出兩名發放網購紅包,求選出的兩名網購者恰好是一男一女的概率;

(2)若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”,根據以上統計數據填寫列聯表,并回答能否在犯錯誤的概率不超過0.010的前提下認為“是否為‘網購達人’與性別有關?”

女性

男性

總計

網購達人

非網購達人

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列哪組中的函數f(x)與g(x)相等(
A.f(x)=x2
B.f(x)=x+1,g(x)= +1
C.f(x)=x,g(x)=
D.f(x)= ,g(x)=

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视