附加題:(本小題10分,實驗班同學必做,其他班學生選做)
是否存在常數a,使得函數f (x)=sin2x+acosx+-
在閉區間
上的最大值為1?若存在,求出對應的a值;若不存在,說明理由.
存在a=使得f (x)在閉區間
上的最大值為1
【解析】解:f (x)=sin2x+acosx+-
=1-cos2x+acosx+-
=-cos2x+acosx+
-
=-(cosx-a)2+
+
-
∵,∴0≤cosx≤1,
………………1分
①
若>1,即a>2,則當cosx=1時,f (x)取得最大值,
f (x)最大值=-(1-a)2+
+
-
=
……………3分
令=1,解得
<2(舍去)
……………4分
②若0≤≤1,即0≤a≤2,則當cosx=
時,f (x)取得最大值,
f (x)最大值=-(a-
a)2+
+
-
=
+
-
……………6分
令+
-
=1,解得
或
<0(舍去)
……………7分
③若<0,即a<0,則當cosx=0時,f (x)取得最大值,
f (x)最大值=-(0-a)2+
+
-
=
-
……………8分
令-
=1,解得
>0(舍去)
……………9分
綜上,存在a=使得f (x)在閉區間
上的最大值為1
……………10分
科目:高中數學 來源:2011-2012學年安徽省高三摸底考試理科數學 題型:解答題
附加題(本大題共兩個小題,每個小題10分,滿分 20分,省級示范性高中要
把該題成績計入總分,普通高中學生選作)
已知,
(1)判斷函數在區間(-∞,0)上的單調性,并用定義證明;
(2)畫出該函數在定義域上的圖像.(圖像體現出函數性質即可)
查看答案和解析>>
科目:高中數學 來源:2010年甘肅省高二第二階段考試數學理卷 題型:解答題
(本小題滿分12分)已知橢圓C:的離心率
,且原點
到直線
的距離為
.
(Ⅰ)求橢圓的方程 ;
(Ⅱ)過點作直線與橢圓C交于
兩點,求
面積的最大值.
四.附加題 (共20分,每小題10分)
查看答案和解析>>
科目:高中數學 來源: 題型:
(Ⅰ)設{an}是集合中所有的數從小到大排列成的數列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,……
將數列{an}各項按照上小下大,左小右大的原則寫成如下的三角形數表:
(i)寫出這個三角形數表的第四行、第五行各數;
(ii)求a100.
(Ⅱ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)
設{bn}是集合中所有的數從小到大排列成的數列,已知bk =1160,求k.
查看答案和解析>>
科目:高中數學 來源: 題型:
將數列{an}各項按照上小下大,左小右大的原則寫成如下的三角形數表:
(。⿲懗鲞@個三角形數表的第四行、第五行各數;
(ⅱ)求a100.
(Ⅱ)(本小題為附加題)
設{bn}是集合{2t+2s+2r|0≤r<s<t,且r,s,tZ}中所有的數從小到大排列成的數列.
已知bk=1160,求k.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com