【題目】若定義域為R的奇函數f(x)滿足f(1+x)=﹣f(x),則下列結論: ①f(x)的圖象關于點 對稱;
②f(x)的圖象關于直線 對稱;
③f(x)是周期函數,且2個它的一個周期;
④f(x)在區間(﹣1,1)上是單調函數.
其中正確結論的序號是 . (填上你認為所有正確結論的序號)
【答案】②③
【解析】解:f(2+x)=﹣f(x+1)=f(x), ∴函數是以2為周期的周期函數,故③是正確的.
∵f(x)為定義域為R的奇函數,
∴f(x)函數圖象關于原點對稱,
∵f(x)為周期函數,周期為2且f(1+x)=﹣f(x),
∴f(x)函數圖象關于點(k,0)(k∈Z)對稱,故①不對.
∵f(1+x)=﹣f(x)
∴f(x+ )=f(x﹣
+1)=﹣f(x﹣
)=f(
﹣x)
∴f(x)的圖象關于直線 對稱,故②正確.
f(x)在區間(﹣1,0)上和在(0,1)上均為單調函數,但在(﹣1,1)不是單調函數,故④不正確.
【考點精析】認真審題,首先需要了解奇偶性與單調性的綜合(奇函數在關于原點對稱的區間上有相同的單調性;偶函數在關于原點對稱的區間上有相反的單調性).
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知△ABC三個頂點坐標為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
【答案】(1);(2)
【解析】試題分析:(1)根據中點坐標公式求出中點
的坐標,根據斜率公式可求得
的斜率,利用點斜式可求
邊上的中線所在直線的方程;(2)先根據斜率公式求出
的斜率,從而求出
邊上的高所在直線的斜率為
,利用點斜式可求
邊上的高所在直線的方程.
試題解析:(1)由B(10,4),C(2,-4),得BC中點D的坐標為(6,0),
所以AD的斜率為k==8,
所以BC邊上的中線AD所在直線的方程為y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直線的斜率為k==1,
所以BC邊上的高所在直線的斜率為-1,
所以BC邊上的高所在直線的方程為y-8=-(x-7),即x+y-15=0.
【題型】解答題
【結束】
17
【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?(愛國福、富強福、和諧福、友善福,敬業福),除夕夜
,每一位提前集齊五福的用戶都將獲得一份現金紅包.某髙校一個社團在年后開學后隨機調査了80位該校在讀大學生,就除夕夜
之前是否集齊五福進行了一次調查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數據如下表:
(1)計算這80位大學生集齊五福的頻率,并據此估算該校10000名在讀大學生中集齊五福的人數;
(2)為了解集齊五福的大學生明年是否愿意繼續參加集五;顒樱摯髮W的學生會從集齊五福的學生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學的官方網站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:x∈(﹣∞,0),2x>3x;命題q:x∈(0,+∞), >x3; 則下列命題中真命題是( )
A.p∧q
B.(¬p)∧q
C.(¬p)∨(¬q)
D.p∧(¬q)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四棱錐 中,四邊形
為平行四邊形,
為等邊三角形,AABE是以
為直角的等腰直角三角形,且
.
(1)證明: 平面 平面BCE;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(x+φ)(A>0,0<<4,|φ|< )過點(0,
),且當x=
時,函數f(x)取得最大值1.
(1)將函數f(x)的圖象向右平移 個單位得到函數g(x),求函數g(x)的表達式;
(2)在(1)的條件下,函數h(x)=f(x)+g(x)+2cos2x﹣1,如果對于x1 , x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 f(x)=asinx﹣bcosx(a,b為常數,a≠0,x∈R)在x= 處取得最小值,則函數g(x)=f(
﹣x)是( )
A.偶函數且它的圖象關于點 (π,0)對稱
B.奇函數且它的圖象關于點 (π,0)對稱
C.奇函數且它的圖象關于點( . ,0)對稱
D.偶函數且它的圖象關于點( ,0)對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(θ+ )=
.圓O的參數方程為
(θ為參數,r>0).
(Ⅰ)求圓O的圓心的極坐標(ρ≥0,0≤θ<2π );
(Ⅱ)當r為何值時,圓O上的點到直線l的最大距離為2+ .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com