【題目】已知函數在
處有極值
.
(Ⅰ)求實數的值;
(Ⅱ)設,討論函數
在區間
上的單調性.
【答案】(1) 在
處有極值
時,
,(2)見解析.
【解析】試題分析:(Ⅰ)求出導函數,由∴且
,求得
或
,檢驗后可得結果;(Ⅱ)由(Ⅰ)可知
,利用導數研究函數的單調性和極值,分五種情況討論,分別比較極值與端點處的函數值即可得結果.
試題解析:(Ⅰ)定義域為
,
∵在
處有極值
,
∴且
,
即
解得:或
當時,
,
當時,
∴在
處有極值
時,
.
(Ⅱ)由(Ⅰ)可知,其單調性和極值分布情況如表:
+ | 0 | - | 0 | + | |
增 | 極大 | 減 | 極小 | 增 |
∴①當,即
時,
在區間
上的單調遞增;
②當,即
時,
在區間
上單調遞增,在區間
上單調遞減;③當
且
,即
時,
在區間
上單調遞減;
④當,即
時,
在區間
上的單調遞減,在區間
上單調遞增;
⑤時,
在區間
上單調遞增.
綜上所述,當時函數
在區間
上的單調性為:
或
時,單調遞增;
時,在
上的單調遞增,在
上單調遞減;
時,單調遞減;
時,在
上單調遞減,在
上單調遞增.
【方法點晴】本題主要考查的是利用導數研究函數的單調性、利用導數研究函數的極值與最值,屬于難題.利用導數研究函數的單調性進一步求函數最值的步驟:①確定函數
的定義域;②對
求導;③令
,解不等式得
的范圍就是遞增區間;令
,解不等式得
的范圍就是遞減區間;④根據單調性求函數
的極值及最值(閉區間上還要注意比較端點處函數值的大。.
科目:高中數學 來源: 題型:
【題目】平面上兩點A(﹣1,0),B(1,0),在圓C:(x﹣3)2+(y﹣4)2=4上取一點P,
(Ⅰ)x﹣y+c≥0恒成立,求c的范圍
(Ⅱ)從x+y+1=0上的點向圓引切線,求切線長的最小值
(Ⅲ)求|PA|2+|PB|2的最值及此時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班學生進行了三次數學測試,第一次有8名學生得滿分,第二次有10名學生得滿分,第三次有12名學生得滿分,已知前兩次均為滿分的學生有5名,三次測試中至少又一次得滿分的學生有15名.若后兩次均為滿分的學生至多有名,則
的值為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,F是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間20名工人年齡數據如下表:
年齡(歲) | 工人數(人) |
19 | 1 |
28 | 3 |
29 | 3 |
30 | 5 |
31 | 4 |
32 | 3 |
40 | 1 |
合計 | 20 |
(1)求這20名工人年齡的眾數與極差;
(2)以十位數為莖,個位數為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是奇函數。
(1)求實數m的值;
(2)判斷函數f(x)在(1,+∞)上的單調性,并給出證明;
(3)當x∈(n,a-2)時,函數f(x)的值域是(1,+∞),求實數a與n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】穩定房價是我國今年實施宏觀調控的重點,國家最近出臺的一系列政策已對各地的房地產市場產生了影響.北京市某房地產介紹所對本市一樓群在今年的房價作了統計與預測:發現每個季度的平均單價y(每平方米面積的價格,單位為元)與第x季度之間近似滿足:y=500sin(ωx+)+9500 (>0),已知第一、二季度平均單價如下表所示:
x | 1 | 2 | 3 |
y | 10000 | 9500 | ? |
則此樓群在第三季度的平均單價大約是 ( )
A.10000元
B.9500元
C.9000元
D.8500元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當x∈[0,+∞)時,求函數y=g(x)﹣f(x)的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com