【題目】某車間為了規定工時額定,需要確定加工零件所花費的時間,為此作了次試驗,得到數據如下:
零件數 | 10 | 20 | 30 | 40 | 50 | 60 |
加工時間 | 64 | 70 | 77 | 82 | 90 | 97 |
(1)試對上述變量與
的關系進行相關性檢驗,如果
與
具有線性相關關系,求出
對
的回歸直線方程;
(2)根據(1)的結論,你認為每小時加工零件的數量額定為多少(四舍五入為整數)比較合理?
附:相關性檢驗的臨界值表
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
4 | 0.811 | 0.917 |
5 | 0.754 | 0.874 |
6 | 0.707 | 0.834 |
,
參考數據:;
17950 | 9100 | 39158 | 1750 | 758 |
科目:高中數學 來源: 題型:
【題目】若S是公差不為0的等差數列
的前
項和,且
成等比數列。
(1)求等比數列的公比;
(2)若,求
的通項公式;
(3)設,
是數列
的前
項和,求使得
對所有
都成立的最小正整數
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,動點
與兩定點
,
連線的斜率之積為
,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)已知點,過原點
且斜率為
的直線
與曲線
交于
兩點(點
在第一象限),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體QPABCD為一簡單組合體,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(1)求證:平面PAB⊥平面QBC;
(2)求該組合體QPABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高
(單位:cm)具有線性相關關系,根據一組樣本數據
(
),用最小二乘法近似得到回歸直線方程為
,則下列結論中不正確的是( )
A.與
具有正線性相關關系
B.回歸直線過樣本的中心點
C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家文明城市評審委員會對甲、乙兩個城市是否能入圍“國家文明城市”進行走訪調查,派出10人的調查組,先后到甲、乙兩個城市的街道、社區進行問卷調查,然后打分(滿分100分),他們給出甲、乙兩個城市分數的莖葉圖如圖所示:
(1)請你用統計學的知識分析哪個城市更應該入圍“國家文明城市”,并說明理由;
(2)從甲、乙兩個城市的打分中各抽取2個,在已知有大于80分的條件下,求抽到乙城市的分數都小于80分的概率.
(參考數據:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調查組到某農村去考察和指導工作.該地區有100戶農民,且都從事水果種植,據了解,平均每戶的年收入為2萬元.為了調整產業結構,調查組和當地政府決定動員部分農民從事水果加工,據估計,若能動員戶農民從事水果加工,則剩下的繼續從事水果種植的農民平均每戶的年收入有望提高
,而從事水果加工的農民平均每戶收入將為
萬元.
(1)若動員戶農民從事水果加工后,要使從事水果種植的農民的總年收入不低于動員前從事水果種植的農民的總年收入,求
的取值范圍;
(2)在(1)的條件下,要使這100戶農民中從事水果加工的農民的總收入始終不高于從事水果種植的農民的總收入,求的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com