(本小題滿分14分)如圖,橢圓:
的左焦點為
,右焦點為
,離心率
.過
的直線交橢圓于
兩點,且△
的周長為
.
(Ⅰ)求橢圓的方程.
(Ⅱ)設動直線:
與橢圓
有且只有一個公共點
,且與直線
相交于點
.試探究:在坐標平面內是否存在定點
,使得以
為直徑的圓恒過點
?若存在,求出點
的坐標;若不存在,說明理由.
(Ⅰ);(Ⅱ)證明見解析.
【解析】
試題分析:(Ⅰ)∵過的直線交橢圓于
兩點,且△
的周長為
.
∴∴
∵
,∴
,∴
∴橢圓的方程為
……4分
(Ⅱ)由,消元可得:
……5分
∵動直線:
與橢圓
有且只有一個公共點
,
∴∴
∴
,
此時即
,
由得
……8分
取,此時
,
以為直徑的圓為
,交
軸于點
,
取,此時
,
以為直徑的圓為
交
軸于點
或
,
故若滿足條件的點存在,即
,
……12分
證明如下
∵,
∴
故以為直徑的圓恒過
軸上的定點
.
……14分
考點:本小題主要考查橢圓標準方程的求法、直線與橢圓的位置關系以及與圓結合的綜合問題,考查學生綜合運用所學知識的能力和計算能力.
點評:遇到直線與橢圓的位置關系的題目,往往免不了要把直線方程和橢圓方程聯立方程組,消去一個未知數,然后利用根與系數的關系進行解答,有時也和向量結合起來解決問題,運算量比較大,難度中等偏上,但是是高考中?嫉念}目,必須加以重視.
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com