【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足cosC+sinC.
(1)求角B的大。
(2)若a+c的最大值為10,求邊長b的值.
【答案】(1)B.(2)b=5
.
【解析】
(1)利用正弦定理,轉化cosC+sinC為sinBsinC=cosBsinC+sinC,繼而得到sinB﹣cosB=1,利用輔助角公式求解B即可;
(2)利用正弦定理轉化:a+c=bsinA+bcosA,用輔助角公式化為正弦型函數求最值即可.
(1)∵cosC+sinC.
∴bcosC+bsinC=a+c,
∴由正弦定理可得sinBcosC+sinBsinC=sinA+sinC,
∵sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC+sinBsinC=sinBcosC+cosBsinC+sinC,
∴sinBsinC=cosBsinC+sinC,
∵C∈(0,π),sinC≠0,
∴sinB﹣cosB=1,可得sin(B
)=1,
可得sin(B)
,
∵B∈(0,π),B∈(
,
),
∴B,可得B
.
(2)∵B,C
A,
∴由正弦定理可得a=bsinA,c=bsinC=bsin(A)=bcosA,
∴a+c=bsinA+bcosAsin(A
)≤10,
當A時取最大值10,此時可得b=5
.
科目:高中數學 來源: 題型:
【題目】普通高中國家助學金,用于資助家庭困難的在校高中生.在本地,助學金分一等和二等兩類,一等助學金每學期1250元,二等助學金每學期750元,并規定:屬于農村建檔立卡戶的學生評一等助學金.某班有10名獲得助學金的貧困學生,其中有3名屬于農村建檔立卡戶,這10名學生中有4名獲一等助學金,另6名獲二等助學金.現從這10名學生中任選3名參加座談會.
(Ⅰ)若事件A表示“選出的3名同學既有建檔立卡戶學生,又有非建檔立卡戶學生”,求A的概率;
(Ⅱ)設X為選出的3名同學一學期獲助學金的總金額,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市美團外賣配送員底薪是每月1800元,設每月配送單數為X,若,每單提成3元,若
,每單提成4元,若
,每單提成4.5元,餓了么外賣配送員底薪是每月2100元,設每月配送單數為Y,若
,每單提成3元,若
,每單提成4元,小想在美團外賣和餓了么外賣之間選擇一份配送員工作,他隨機調查了美團外賣配送員甲和餓了么外賣配送員乙在2019年4月份(30天)的送餐量數據,如下表:
表1:美團外賣配送員甲送餐量統計
日送餐量x(單) | 13 | 14 | 16 | 17 | 18 | 20 |
天數 | 2 | 6 | 12 | 6 | 2 | 2 |
表2:餓了么外賣配送員乙送餐量統計
日送餐量x(單) | 11 | 13 | 14 | 15 | 16 | 18 |
天數 | 4 | 5 | 12 | 3 | 5 | 1 |
(1)設美團外賣配送員月工資為,餓了么外賣配送員月工資為
,當
時,比較
與
的大小關系
(2)將4月份的日送餐量的頻率視為日送餐量的概率
(ⅰ)計算外賣配送員甲和乙每日送餐量的數學期望E(X)和E(Y)
(ⅱ)請利用所學的統計學知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的上頂點為
,以
為圓心橢圓的長半軸為半徑的圓與
軸的交點分別為
,
.
(1)求橢圓的標準方程;
(2)設不經過點的直線
與橢圓
交于
,
兩點,且
,試探究直線
是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的2倍,A,B分別為橢圓的左頂點和下頂點,且
的面積為1.
(1)求橢圓C的方程;
(2)設點M為橢圓上位于第一象限內一動點,直線與
軸交于點C,直線
與
軸交于點D,求證:四邊形
的面積為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com