【題目】上饒某中學一研究性學習小組早晨在校門口詢問調查同學的體重,對來校同學依次每5人抽取一人詢問體重,共抽取40位同學,將他們的體重(分成六段:
,
,
,
,
,
,統計后得到如圖的頻率分布直方圖.
(1)此研究性學習小組在采樣中,用到的是什么抽樣方法?并求這40位同學體重的眾數和中位數的估計值.
(2)從體重在的同學中任意抽取3位,求體重在
,
內都有同學的概率.
【答案】(1)系統抽樣,眾數57.5, 中位數 57.5; (2)
【解析】
(1)因為是依次每隔5人選取數據,因而是系統抽樣。根據頻率分布直方圖中眾數和中位數分布,計算可得眾數及中位數的估計值。
(2)先求得體重在,
的人數。然后求得3人體重都在
內,3人體重都在
內的概率,根據對立事件概率求法即可求得抽取的3人體重既有在
,也有在
內的概率.
(1)由題意可知,抽取的樣本為依次每5人抽取一人,是等間隔抽樣,所以是系統抽樣.
由頻率分布直方圖可知,最高矩形的底邊中點值即為眾數,所以眾數為
從左側開始,頻率依次求和等于0.5時加到這一組。其中在
這一組加的頻率為
而這一組的頻率為0.3,所以中位數為
(2)抽取有
人,
有
人,
抽取在
范圍內共有20人.
則根據對立事件概率計算方法,在兩個組都有人分布的概率
科目:高中數學 來源: 題型:
【題目】甲船在點發現乙船在北偏東
的
處,
里,且乙船以每小時10里的速度向正北行駛,已知甲船的速度是每小時
里,問:甲船以什么方向前進,才能與乙船最快相遇,相遇時甲船行駛了多少小時?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在實常數k和b,使得函數對其公共定義域上的任意實數x都滿足:
恒成立,則稱此直線
的“隔離直線”,已知函數
(e為自然對數的底數),有下列命題:
①內單調遞增;
②之間存在“隔離直線”,且b的最小值為
;
③之間存在“隔離直線”,且k的取值范圍是
;
④之間存在唯一的“隔離直線”
.
其中真命題的序號為__________.(請填寫正確命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高二某班共有20名男生,在一次體驗中這20名男生被平均分成兩個小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:
(1)根據莖葉圖,分別寫出兩組學生身高的中位數;
(2)從該班身高超過的7名男生中隨機選出2名男生參加校籃球隊集訓,求這2名男生至少有1人來自第二組的概率;
(3)在兩組身高位于(單位:
)的男生中各隨機選出2人,設這4人中身高位于
(單位:
)的人數為
,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學有教職工130人,對他們進行年齡狀況和受教育程度的調查,其結果如下:
本科 | 研究生 | 合計 | |
35歲以下 | 50 | 35 | 85 |
35-50歲 | 20 | 13 | 33 |
50歲以上 | 10 | 2 | 12 |
從這130名教職工中隨機地抽取一人,求下列事件的概率;
(1)具有本科學歷;
(2)35歲及以上;
(3)35歲以下且具有研究生學歷.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F1,F2分別是橢圓E: (a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,|AF1|=3|BF1|,若cos∠AF2B=
,則橢圓E的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的參數方程為,(t為參數),在以原點O為極點,x軸的非負半軸為極軸建立的極坐標系中,直線l的極坐標方程為
,A,B兩點的極坐標分別為
.
(1)求圓C的普通方程和直線l的直角坐標方程;
(2)點P是圓C上任一點,求△PAB面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com