(本小題滿分12分)如圖,平面平面
,
是以
為斜邊的等腰直角三角形,
分別為
,
,
的中點,
,
.
(1)設是
的中點,證明:
平面
;
(2)在內是否存在一點
,使
平面
,若存在,請找出點M,并求FM的長;若不存在,請說明理由。
科目:高中數學 來源: 題型:解答題
如圖所示:一吊燈的下圓環直徑為4m,圓心為O,通過細繩懸掛在天花板上,圓環呈水平狀態,并且與天花板的距離(即)為2m,在圓環上設置三個等分點A1,A2,A3。點C為
上一點(不包含端點O、B),同時點C與點A1,A2,A3,B均用細繩相連接,且細繩CA1,CA2,CA3的長度相等。設細繩的總長為
,
(1)設∠CA1O =(rad),將y表示成
的函數關系式;
(2)請你設計,當角
正弦值的大小是多少時,細繩總長
最小,并指明此時 BC應為多長。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在四棱錐V-ABCD中,底面ABCD是正方形,側面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大小。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)四棱錐的底面是正方形,
,點E在棱PB上.若AB=
,
(Ⅰ)求證:平面;
(Ⅱ)若E為PB的中點時,求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE
,G是BC的中點.沿EF將梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如圖).
(1)當時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,求
的最大值;
(3)當取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
正△的邊長為4,
是
邊上的高,
分別是
和
邊的中點,現將△
沿
翻折成直二面角
.
(1)試判斷直線與平面
的位置關系,并說明理由;
(2)求平面BDC與平面DEF的夾角的余弦值;
(3)在線段上是否存在一點
,使
?證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com