【題目】已知函數(a為實常數).
(1)若,作函數
的圖象并寫出單調減區間;
(2)當時,設
在區間
上的最小值為
,求
的表達式;
(3)當時對于函數
和函數
,若對任意的
,總存在
使
成立,求實數m的值.
科目:高中數學 來源: 題型:
【題目】盡管目前人類還無法準確預報地震,但科學家通過研究,已經對地震有所了解,例如,地震釋放出的能量(單位:焦耳)與地震里氏震級
之間的關系為
.
(1)已知地震等級劃分為里氏級,根據等級范圍又分為三種類型,其中小于
級的為“小地震”,介于
級到
級之間的為“有感地震”,大于
級的為“破壞性地震”若某次地震釋放能量約
焦耳,試確定該次地震的類型;
(2)2008年汶川地震為里氏級,2011年日本地震為里氏
級,問:2011年日本地震所釋放的能量是2008年汶川地震所釋放的能量的多少倍? (取
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小電子產品2018年的價格為9元/件,年銷量為件,經銷商計劃在2019年將該電子產品的價格降為
元/件(其中
),經調查,顧客的期望價格為5元/件,經測算,該電子產品的價格下降后年銷量新增加了
件(其中常數
).已知該電子產品的成本價格為4元/件.
(1)寫出該電子產品價格下降后,經銷商的年收益與實際價格
的函數關系式:(年收益=年銷售收入-成本)
(2)設,當實際價格最低定為多少時,仍然可以保證經銷商2019年的收益比2018年至少增長20%?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:y=x+4,動圓⊙O:x2+y2=r2(1<r<2),菱形ABCD的一個內角為60°,頂點A、B在直線l上,頂點C、D在⊙O上.當r變化時,求菱形ABCD的面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某輛汽車以千米
小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求
時,每小時的油耗(所需要的汽油量)為
升,其中
為常數,且
.
(1)若汽車以120千米小時的速度行駛時,每小時的油耗為11.5升,欲使每小時的油耗不超過9升,求
的取值范圍;
(2)求該汽車行駛100千米的油耗的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】類似于平面直角坐標系,定義平面斜坐標系:設數軸、
的交點為
,與
、
軸正方向同向的單位向量分別是
、
,且
與
的夾角為
,其中
,由平面向量基本定理:對于平面內的向量
,存在唯一有序實數對
,使得
,把
叫做點
在斜坐標系
中的坐標,也叫做向量
在斜坐標系
中的坐標,記為
,在平面斜坐標系內,直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標系內相應概念以相同方式定義,如
時,方程
表示斜坐標系內一條過點
,且方向向量為
的直線.
(1)若,
,
,求
;
(2)若,已知點
和直線
;
①求的一個法向量;
②求點到直線
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com