【題目】為了了解初三學生女生身高情況,某中學對初三女生身高進行了一次測量,所得數據整理后列出了頻率分布表如下:
組 別 | 頻數 | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 計 | M | N |
(1)求出表中所表示的數分別是多少?
(2)畫出頻率分布直方圖.
(3)全體女生中身高在哪組范圍內的人數最多?由直方圖確定此組數據中位數是多少?
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若,求函數
的圖象在
處的切線方程;
(2)若,試討論方程
的實數解的個數;
(3)當時,若對于任意的
,都存在
,使得
,求滿足條件的正整數
的取值的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓短軸的左右兩個端點分別為A,B,直線
與x軸、y軸分別交于兩點E,F,交橢圓于兩點C,D.
(1)若,求直線
的方程;
(2)設直線AD,CB的斜率分別為,若
,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標有字母A、3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規則進行:先在第一號盒子中任取一球,若取得標有字母A的球,則在第二號盒子中任取一個球;若第一次取得標有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為( )
A.0.59 B.0.54 C.0.8 D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足:對于任意
且
時,
,
.
(1)若,求證:
為等比數列;
(2)若.
① 求數列的通項公式;
② 是否存在,使得
為數列
中的項?若存在,求出所有滿足條件的
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據微信同程旅游的調查統計顯示,參與網上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網上購票人數成等差數列,求的值;
(2)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:
年齡在歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為,
.求:
(1)tan(α+β)的值;
(2)α+2β的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(x+y)=f(x)+f(y),當x>0時,有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數f(x)的單調性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,
BF⊥平面ACE,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐D—AEC的體積;
(3)設點M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,
使得MN∥平面DAE.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com