【題目】如圖(1),五邊形中,
.如圖(2),將
沿
折到
的位置,得到四棱錐
.點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若直線與
所成角的正切值為
,設
,求四棱錐
的體積.
【答案】(1)見解析;(2).
【解析】試題分析:
(1)要證明面面垂直,一般先證線面垂直,題中已知平面
,由于
是
的中點,只要取
的中點
,可證
,從而得
平面
,因此就得到面面垂直;
(2)由(1)的垂直可證是等邊三角形,因此有
,再得
,于是有
平面
,可得
,這樣可求得圖形中各線段長,可得四棱錐的底面積和高,得體積.
試題解析:
(1)證明:取的中點
,連接
,則
,
又,所以
,
則四邊形為平行四邊形,所以
,
又平面
,
∴平面
,
∴平面平面PCD;
(2)取的中點
,連接
,
因為平面
,
∴.
由即
及
為
的中點,可得
為等邊三角形,
∴,
又,∴
,∴
,
∴平面
平面
,
∴平面平面
.
所以
所以.
,∴
為直線
與
所成的角,
由(1)可得,∴
,∴
,
由,可知
,
則.
其他方法酌情給分
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了解某地區電視觀眾對某類體育節目的收視情況,隨機抽取了100名觀眾進行調查.下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:
將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據已知條件完成上面的列聯表,若按
的可靠性要求,并據此資料,你是否認為“體育迷”與性別有關?
(2)將上述調查所得到的頻率視為概率.現在從該地區大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為.若每次抽取的結果是相互獨立的,求
分布列,期望
和方差
.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高一年級期末考試的學生中抽出60名學生,其成績(均為整數)的頻率分布直方圖如圖所示:
(1)依據頻率分布直方圖,估計這次考試的及格率(60分及以上為及格)和平均分;
(2)已知在[90,100]段的學生的成績都不相同,且都在94分以上,現用簡單隨機抽樣方法,從95,96,97,98,99,100這6個數中任取2個數,求這2個數恰好是兩個學生的成績的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用莖葉圖表示這兩組數據;
(2)現要從中選派一人參加數學競賽,從統計學的角度(在平均數、方差或標準差中選兩個)考慮,你認為選派哪位學生參加合適?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題: ①把函數y=sin(x﹣ )圖象上所有點的橫坐標縮短到原來的
倍,縱坐標不變,得到函數y=sin(2x﹣
);
②若α,β是第一象限角且α<β,則cosα>cosβ;
③x=﹣ 是函數y=cos(2x+
π)的一條對稱軸;
④函數y=4sin(2x+ )與函數y=4cos(2x﹣
)相同;
⑤y=2sin(2x﹣ )在[0,
]是增函數;
則正確命題的序號 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com