有一塊邊長為4米的正方形鋼板,現對其進行切割,焊接成一個長方體無蓋容器(切、焊損耗忽略不計),有人用數學知識作了如下設計:在鋼板的四個角處各切去一個小正方形,剩余部分圍成長方體。
(Ⅰ)求這種切割、焊接而成的長方體的最大容積.
(Ⅱ)請問:能重新設計,使所得長方體的容器的容積嗎?若能、給出你的一種設計方案。
(Ⅰ)(m3);(Ⅱ)能(參考解析)
解析試題分析:(Ⅰ)根據題意可得假設每個小正方形的邊長為x.則通過折疊可得一個無蓋的正方體.所以可以求出正方體的體積的表達.通過求導可求得體積的最大值.
(Ⅱ)本小題的設計較困難.通過對比和體積公式的應用可以假設出較多的方案.本小題的設計方案具有一定的技巧性.
試題解析:(1)設切去的小正方形邊長為x.則.所以
.所以當
時.
.當
時.
.所以當
時.
(m3).
(2)能.如圖所示.先在在正方形一邊的兩個角出各切下一個邊長為1米的小正方形.再將這兩個小正方形焊接在另一邊的中間.然后焊接成長方形容器.此時. .
考點:1.正方體的體積的求法.2.導數求最值.3.創新思維的構造.
科目:高中數學 來源: 題型:解答題
某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某種商品原來每件售價為25元,年銷售8萬件.
(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術革新和營銷策略改革,并提高定價到元.公司擬投入
萬元作為技改費用,投入50萬元作為固定宣傳費用,投入
萬元作為浮動宣傳費用.試問:當該商品明年的銷售量
至少應達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com