【題目】如圖,點F是拋物線τ:x2=2py (p>0)的焦點,點A是拋物線上的定點,且 =(2,0),點B,C是拋物線上的動點,直線AB,AC斜率分別為k1 , k2 .
( I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點D是點B,C處切線的交點,記△BCD的面積為S,證明S為定值.
【答案】解:(Ⅰ)設A(x0,y0),可知F(0, ),故
.
∴ ,代入x2=2py,得p=2.
∴拋物線τ的方程為x2=4y.
(Ⅱ)過D作y軸的平行線交BC于點E,并設B( ),C(
),
由(Ⅰ)得A(﹣2,1).
=2,
∴x2﹣x1=8.
直線DBy= ,直線CDy=
,解得
.
∴直線BC的方程為y﹣ =
,將xD代入得
.
∴△BCD的面積為S= ×ED×(x2﹣x1)=
=
(定值)
【解析】(Ⅰ)設A(x0,y0),可知F(0, ),故
.求得A坐標,代入x2=2py,得p=2.即可(Ⅱ)過D作y軸的平行線交BC于點E,.并設B(
),C(
),由
=2,得x2﹣x1=8.聯立直線、直線方程得
.由題意
,即可求△BCD的面積為S=
×ED×(x2﹣x1)=
=
(定值)
科目:高中數學 來源: 題型:
【題目】某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用 (單位:元)關于月用電量
(單位:度)的函數解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求 的值;
(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數據用該組區間的中點值代替,記 為該居民用戶1月份的用電費用,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列幾個命題:
①函數是偶函數,但不是奇函數;
②方程的有一個正實根,一個負實根,
;
③是定義在
上的奇函數,當
時,
,則
時,
④函數的值域是
.
其中正確命題的序號是_____(把所有正確命題的序號都寫上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形,且平面ABEF⊥平面ABCD,M為AF的中點, (I)求證:AC⊥BM;
(II)求異面直線CE與BM所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ),(A,ω,φ是常數,A>0,ω>0,|φ|≤ )的部分圖象如圖所示,若方程f(x)=a在x∈[﹣
,
]上有兩個不相等的實數根,則a的取值范圍是( )
A.[ ,
)
B.[﹣ ,
)
C.[﹣ ,
)
D.[ ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2 ,則a2+b2的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線C2:
. (Ⅰ)求曲線C1的普通方程和C2的直角坐標方程;
(Ⅱ)若C1與C2相交于A、B兩點,設點F(1,0),求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中石化集團獲得了某地深海油田區塊的開采權,集團在該地區隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節約勘探費用.勘探初期數據資料見如表:
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(1)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(2)現準備勘探新井7(1,25),若通過1、3、5、7號井計算出的 的值(
精確到0.01)相比于(1)中b,a的值之差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井? (參考公式和計算結果:
)
(3)設出油量與勘探深度的比值k不低于20的勘探并稱為優質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優質井的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽車的使用年數x與所支出的維修費用y的統計數據如表:
使用年數x(單位:年) | 1 | 2 | 3 | 4 | 5 |
維修總費用y(單位:萬元) | 0.5 | 1.2 | 2.2 | 3.3 | 4.5 |
根據上表可得y關于x的線性回歸方程 =
x﹣0.69,若該汽車維修總費用超過10萬元就不再維修,直接報廢,據此模型預測該汽車最多可使用( )
A.8年
B.9年
C.10年
D.11年
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com