【題目】已知函數.
(1)討論的單調性;
(2)當時,
,求
的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)求出函數的導數,分
和
兩種情況討論,分析導數
的符號變化,即可求出函數
的單調區間;
(2)問題變形為,令
,由題意得出
,根據函數
的單調性確定
的范圍即可.
(1),定義域為
且
.
①當時,則
,則函數
在
上單調遞增;
②當時,由
,得
,得
.
當時,
,函數
單調遞減;
當時,
,函數
單調遞增.
此時,函數的單調減區間為
,單調增區間為
.
綜上所述,當時,函數
的單調遞增區間為
;
當時,函數
的單調減區間為
,單調增區間為
;
(2)變形為
,
令,定義域為
,且
,
.
①當時,對任意的
,
,函數
在區間
上為增函數,
此時,,合乎題意;
②當時,則函數
在
上的單調減區間為
,單調增區間為
.
(i)當時,即當
時,則函數
在區間
上為增函數,
此時,則函數
在區間
上為增函數.
此時,,合乎題意;
(ii)當時,即當
時,則函數
在區間
上單調遞減,在區間
上單調遞增,所以,
,
又,所以,函數
在區間
上單調遞減,
當時,
,不合乎題意.
綜上所述,實數的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓上的點到右焦點
的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點
作傾斜角不為零的直線
與橢圓
交于兩點
,設線段
的垂直平分線在
軸上的截距為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的坐標方程為
,若直線
與曲線
相切.
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
、
于原點
構成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數據按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數的值(保留兩位小數);
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份
的散點圖,其擬合的線性回歸方程是
若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點的坐標分別為
,
.三角形
的兩條邊
,
所在直線的斜率之積是
.
(1)求點的軌跡方程;
(2)設直線方程為
,直線
方程為
,直線
交
于
,點
,
關于
軸對稱,直線
與
軸相交于點
.若
的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將所有平面向量組成的集合記作,
是從
到
的對應關系,記作
或
,其中
、
、
、
都是實數,定義對應關系
的模為:在
的條件下
的最大值記作
,若存在非零向量
,及實數
使得
,則稱
為
的一個特殊值;
(1)若,求
;
(2)如果,計算
的特征值,并求相應的
;
(3)若,要使
有唯一的特征值,實數
、
、
、
應滿足什么條件?試找出一個對應關系
,同時滿足以下兩個條件:①有唯一的特征值
,②
,并驗證
滿足這兩個條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創新型國家,把握世界新一輪科技革命和產業變革大勢,深入實施創新驅動發展戰略,不斷增強經濟創新力和競爭力.某手機生產企業積極響應政府號召,大力研發新產品,爭創世界名牌.為了對研發的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數據,如表所示:
單價 | ||||||
銷量 |
已知.
(1)若變量具有線性相關關系,求產品銷量
(百件)關于試銷單價
(千元)的線性回歸方程
;
(2)用(1)中所求的線性回歸方程得到與對應的產品銷量的估計值
.當銷售數據
對應的殘差的絕對值
時,則將銷售數據
稱為一個“好數據”.現從
個銷售數據中任取
個子,求“好數據”個數
的分布列和數學期望
.
(參考公式:線性回歸方程中的估計值分別為
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com