【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DBEC.(填“>”,“<”或“=”)
(2)發現探究:若將圖1中的△ADE繞點A順時針旋轉α(0°<α<180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
(3)拓展運用:如圖3,P是等腰直角三角形ABC內一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數.
【答案】
(1)=
(2)
解:成立.
證明:由①易知AD=AE,
∴由旋轉性質可知∠DAB=∠EAC,
在△DAB和△EAC中
得
∴△DAB≌△EAC,
∴DB=CE,
(3)
解:如圖,
將△CPB繞點C旋轉90°得△CEA,連接PE,
∴△CPB≌△CEA,
∴CE=CP=2,AE=BP=1,∠PCE=90°,
∴∠CEP=∠CPE=45°,
在Rt△PCE中,由勾股定理可得,PE=2 ,
在△PEA中,PE2=(2 )2=8,AE2=12=1,PA2=32=9,
∵PE2+AE2=AP2,
∴△PEA是直角三角形
∴∠PEA=90°,
∴∠CEA=135°,
又∵△CPB≌△CEA
∴∠BPC=∠CEA=135°.
【解析】解:(1)∵DE∥BC,
∴ ,
∵AB=AC,
∴DB=EC,
故答案為:DB=EC
此題是幾何變換綜合題,主要考查了旋轉的性質,平行線的性質,全等三角形的性質和判定,勾股定理及其逆定理,解本題的關鍵是構造全等三角形,也是本題的難點.(1)由DE∥BC,得到 ,結合AB=AC,得到DB=EC;(2)由旋轉得到的結論判斷出△DAB≌△EAC,得到DB=CE;(3)由旋轉構造出△CPB≌△CEA,再用勾股定理計算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,在簡單計算即可.
科目:高中數學 來源: 題型:
【題目】將一枚質地均勻且四個面上分別標有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數字為,第二次朝下面的數字為
.用
表示一個基本事件.
請寫出所有基本事件;
求滿足條件“”為整數的事件的概率;
求滿足條件“”的事件的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點E為SD的中點.
(1)求證:直線SB∥平面ACE
(2)求證:直線AC⊥平面SBD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線與圓
交于M、N兩點,且M、N關于直線
對稱.
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點,是否存在實數a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“五一”假期期間,某餐廳對選擇、
、
三種套餐的顧客進行優惠。對選擇
、
套餐的顧客都優惠10元,對選擇
套餐的顧客優惠20元。根據以往“五一”假期期間100名顧客對選擇
、
、
三種套餐的情況得到下表:
選擇套餐種類 | |||
選擇每種套餐的人數 | 50 | 25 | 25 |
將頻率視為概率.
(I)若有甲、乙、丙三位顧客選擇某種套餐,求三位顧客選擇的套餐至少有兩樣不同的概率;
(II)若用隨機變量表示兩位顧客所得優惠金額的綜合,求
的分布列和期望。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】氣象意義上,從春季進入夏季的標志為:“連續5天的日平均溫度不低于22℃”.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據(記錄數據都是正整數):
①甲地:5個數據的中位數為24,眾數為22;
②乙地:5個數據的中位數為27,總體均值為24;
③丙地:5個數據的中有一個數據是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2016高考浙江文數】如圖,設拋物線的焦點為F,拋物線上的點A到y軸的距離等于|AF|-1.
(I)求p的值;
(II)若直線AF交拋物線于另一點B,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與x
軸交于點M.求M的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com