【題目】設函數,其中
為自然對數的底數.
(Ⅰ)當時,求曲線
在點
處的切線方程;
(Ⅱ)求函數在區間
上的最小值.
科目:高中數學 來源: 題型:
【題目】下列各組函數,在同一直角坐標系中f(x)與g(x)相同的一組是( )
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是
( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知AB為半圓O的直徑,且AB=4,C為半圓上一點,過點C作半圓的切線CD,過A點作AD⊥CD于D,交半圓于點E,DE=1.
(Ⅰ)證明:AC平分∠BAD;
(Ⅱ)求BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (a>0且a≠1)是定義域為R的奇函數.
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)= ,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人上午7時乘船出發,以勻速海里/小時
從
港前往相距50海里的
港,然后乘汽車以勻速
千米/小時(
)自
港前往相距
千米的
市,計劃當天下午4到9時到達
市.設乘船和汽車的所要的時間分別為
、
小時,如果所需要的經費
(單位:元)
(1)試用含有、
的代數式表示
;
(2)要使得所需經費最少,求
和
的值,并求出此時的費用.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com