精英家教網 > 高中數學 > 題目詳情

已知函數.
(Ⅰ)討論的單調性;
(Ⅱ)試確定的值,使不等式恒成立.

(Ⅰ)當時,上遞增;當時,單調遞增;當時,單調遞減;(Ⅱ).

解析試題分析:本題主要考查導數的運算,利用導數研究函數的單調區間、最值等數學知識和方法,突出考查分類討論思想和綜合分析問題和解決問題的能力.第一問是利用導數研究函數的單調性,但是題中有參數,需對參數進行討論,可以轉化為含參一元一次不等式的解法;第二問是恒成立問題,可以轉化為求最值問題,研究一下最大值是不是0,這一問中也需要對進行討論.
試題解析:(Ⅰ)
,,上遞增;
,當時,,單調遞增;
時,,單調遞減.                  5分
(Ⅱ)由(Ⅰ)知,若,上遞增,
,故不恒成立.
,當時,遞減,,不合題意.
,當時,遞增,,不合題意.
,上遞增,在上遞減,
符合題意,
綜上.             10分
考點:1.利用導數求函數的單調性;2.利用導數求函數最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數.
(1)若對一切恒成立,求的最大值;
(2)設,且是曲線上任意兩點,若對任意,直線的斜率恒大于常數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a>0,函數.
(1)若,求函數的極值,
(2)是否存在實數,使得成立?若存在,求出實數的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數為奇函數,其圖象在點處的切線與直線垂直,導函數 的最小值為
(1)求的值;
(2)求函數的單調遞增區間,并求函數上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數。
(Ⅰ)若是增函數,求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數
(1)求曲線在點處的切線方程;  (2)當時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為實數,函數
(Ⅰ)求的單調區間與極值;
(Ⅱ)求證:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若的極值點,求實數的值;
(2)若上為增函數,求實數的取值范圍;
(3)當時,方程有實根,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為函數圖象上一點,O為坐標原點,記直線的斜率
(1)若函數在區間上存在極值,求實數m的取值范圍;
(2)當 時,不等式恒成立,求實數的取值范圍;
(3)求證:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视