【題目】設函數(
且
)是定義域為
的奇函數.
(1)若,試求不等式
的解集;
(2)若,且
,求
在
上的最小值.
【答案】(Ⅰ)
(Ⅱ)-2
【解析】
首先利用奇函數求得
的值.(1)根據
求得
,由此求得函數
是單調遞增函數,再根據函數的奇偶性和單調性求得不等式的解集.(2)利用
求得
的值.由此求得函數
的解析式.在利用換元法以及配方法求得函數
在給定區間上的最小值.
∵f(x)是定義域為R的奇函數,∴f(0)=0,∴k-1=0,∴k=1.
(1)∵f(1)>0,∴a->0,又a>0且a≠1,∴a>1.∵k=1,∴f(x)=ax-a-x,當a>1時,y=ax和y=-a-x在R上均為增函數,∴f(x)在R上為增函數,原不等式可化為f(x2+2x)>f(4-x),∴x2+2x>4-x,即x2+3x-4>0,∴x>1或x<-4,∴不等式的解集為{x|x>1或x<-4}.
(2)∵f(1)=,∴a-
=
,即2a2-3a-2=0.∴a=2或a=-
(舍去),∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2,令t=h(x)=2x-2-x(x≥1),則g(t)=t2-4t+2.∵t=h(x)在[1,+∞)上為增函數(由(1)可知),∴h(x)≥h(1)=
,即t≥
,g(t)=t2-4t+2=(t-2)2-2,t∈
.∴當t=2時,g(t)取得最小值-2,即g(x)取得最小值-2,此時x=log2(1+
),故當x=log2(1+
)時,g(x)有最小值-2.
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱的側面
是平行四邊形,
,平面
平面
,且
分別是
的中點.
(1)求證:平面
;
(2)當側面是正方形,且
時,
(。┣蠖娼的大;
(ⅱ)在線段上是否存在點
,使得
?若存在,指出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程與直線
的直角坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數(其中
)的部分圖象如圖所示,把函數
的圖像向右平移
個單位長度,再向下平移1個單位,得到函數
的圖像.
(1)當時,求
的值域
(2)令,若對任意
都有
恒成立,求
的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C三地有直道相通,其中AB、BC為步行道,AC為機動車道,已知A在B的正北方向6千米處,C在B的正東方向千米處,某校開展步行活動,從A地出發,經B地到達C地,中途不休息.
(1)媒體轉播車從A出發,沿AC行至點P處,此時,求PB的距離;
(2)媒體記者隨隊步行,媒體轉播車從A地沿AC前往C,兩者同時出發,步行的速度為6千米/小時,為配合轉播,轉播車的速度為12千米/小時,記者和轉播車通過專用對講機保持聯系,轉播車開到C地后原地等待,直到記者到達C地,若對講機的有效通話距離不超過9千米,求他們通過對講機能保持聯系的總時長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了激勵業務員的積極性,對業績在60萬到200萬的業務員進行獎勵獎勵方案遵循以下原則:獎金y(單位:萬元)隨著業績值x(單位:萬元)的增加而增加,且獎金不低于1.5萬元同時獎金不超過業績值的5%.
(1)若某業務員的業績為100萬核定可得4萬元獎金,若該公司用函數(k為常數)作為獎勵函數模型,則業績200萬元的業務員可以得到多少獎勵?(已知
,
)
(2)若采用函數作為獎勵函數模型試確定最小的正整數a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com