【題目】中心在原點的橢圓C1與雙曲線C2具有相同的焦點,F1(﹣c,0),F2(c,0),P為C1與C2在第一象限的交點,|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
【答案】C
【解析】解:設橢圓的方程為 +
=1(a>b>0), 其離心率為e1 ,
雙曲線的方程為 ﹣
=1(m>0,n>0),其離心率為e2 ,
|F1F2|=2c,
∵有公共焦點的橢圓與雙曲線在第一象限的交點為P,
△PF1F2是以PF2為底邊的等腰三角形,
∴在橢圓中,|PF1|+|PF2|=2a,而|PF1|=|F1F2|=2c,
∴|PF2|=2a﹣2c,①
同理,在該雙曲線中,|PF2|=2c﹣2m;②
由①②可得m=2c﹣a.
∵e1= ∈(
,
),
∴ <
<
,
又e2= =
=
=
∈(2,3).
故選:C.
設橢圓的方程為 +
=1(a>b>0)(a>b>0),其離心率e1 , 雙曲線的方程為
﹣
=1(m>0,n>0),離心率為e2 , 由e1=
∈(
,
),e2=
,由△PF1F2是以PF2為底邊的等腰三角形,結合橢圓與雙曲線的定義可求得m=2c﹣a,從而可求得答案.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P為橢圓C: =1(a>b>0)的下頂點,M,N在橢圓上,若四邊形OPMN為平行四邊形,α為直線ON的傾斜角,若α∈(
,
],則橢圓C的離心率的取值范圍為( )
A.(0, ]
B.(0, ]
C.[ ,
]
D.[ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,點E是PC的中點,作EF⊥PB交PB于點F.
(Ⅰ)求證:PB⊥平面AEF;
(Ⅱ)求二面角A﹣PB﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的左右焦點分別為F1,F2,離心率為
,過點F1且垂直于x軸的直線被橢圓截得的弦長為
,直線l:y=kx+m與橢圓交于不同的A,B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q滿足: (O為坐標原點).求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=e2x+ln(x+a).
(1)當a=1時,①求f(x)在(0,1)處的切線方程;②當x≥0時,求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱中,
平面
,
,
,
為
的中點.
(1)求四棱錐的體積;
(2)求證: ;
(3)判斷線段上是否存在一點
(與點
不重合),使得
四點共面? (結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 是函數f(x)=msinωx﹣cosωx(m>0)的一條對稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調遞增區間;
(Ⅱ)設角A,B,C為△ABC的三個內角,對應邊分別為a,b,c,若f(B)=2, ,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知極點為直角坐標系的原點,極軸為x軸正半軸且單位長度相同的極坐標系中曲線C1:ρ=1, (t為參數).
(Ⅰ)求曲線C1上的點到曲線C2距離的最小值;
(Ⅱ)若把C1上各點的橫坐標都擴大為原來的2倍,縱坐標擴大為原來的 倍,得到曲線
.設P(﹣1,1),曲線C2與
交于A,B兩點,求|PA|+|PB|.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com