精英家教網 > 高中數學 > 題目詳情
已知某山區小學有100名四年級學生,將全體四年級學生隨機按00~99編號,并且按編號順序平均分成10組.現要從中抽取10名學生,各組內抽取的編號按依次增加10進行系統抽樣.

(1)若抽出的一個號碼為22,則此號碼所在的組數是多少?據此寫出所有被抽出學生的號碼;
(2)分別統計這10名學生的數學成績,獲得成績數據的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.
(1)第3組02,12,22,32,42,52,62,72,82,92. (2)  (3)

試題分析:
(1)根據系統抽樣的方式,可以得到100名學生要分10組,每組10人,每組抽取一人,第三組編號為20-29,故22號為第三組學生,因為間隔為10,所以22依次加或者減10即可得到各組被抽到學生的編號.
(2)首先根據莖葉圖可得還原這10名學生的成績,然后求的平均數,10名學生的成績分別減去平均數的平方和再除以10即為方差.
(3)根據莖葉圖可得成績不低于73分的學生有5名,首先列出五選二的所有的基本事件共有10種,即為(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81),而成績之差不小于154分的有7種,再根據古典概型的概率計算公式即可求的相應的概率.
試題解析:
(1)由題意,得抽出號碼為22的組數為3.                        (2分)
因為2+10×(3-1)=22,所以第1組抽出的號碼應該為02,抽出的10名學生的號碼依次分別為:02,12,22,32,42,52,62,72,82,92.                  (4分)
(2)這10名學生的平均成績為:
×(81+70+73+76+78+79+62+65+67+59)=71,            (6分)
故樣本方差為:(102+12+22+52+72+82+92+62+42+122)=52. (8分)
(3)從這10名學生中隨機抽取兩名成績不低于73分的學生,共有如下10種不同的取法:
(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).               (10分)
其中成績之和不小于154分的有如下7種:(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).                      (12分)
故被抽取到的兩名學生的成績之和不小于154分的概率為:      (13分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

下表是對某市8所中學學生是否吸煙進行調查所得的結果:
 
吸煙學生
不吸煙學生
父母中至少有一人吸煙
816
3 203
父母均不吸煙
188
1 168
(1)在父母至少有一人吸煙的學生中,估計吸煙學生所占的百分比是多少?
(2)在父母均不吸煙的學生中,估計吸煙學生所占的百分比是多少?
(3)學生的吸煙習慣和父母是否吸煙有關嗎?請簡要說明理由.
(4)有多大的把握認為學生的吸煙習慣和父母是否吸煙有關?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

大家知道,莫言是中國首位獲得諾貝爾獎的文學家,國人歡欣鼓舞.某高校文學社從男女生中各抽取50名同學調查對莫言作品的了解程度,結果如下:
閱讀過莫言的
作品數(篇)
0~25
26~50
51~75
76~100
101~130
男生
3
6
11
18
12
女生
4
8
13
15
10
(1)試估計該校學生閱讀莫言作品超過50篇的概率;
(2)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據題意完成下表,并判斷能否有75%的把握認為對莫言作品的非常了解與性別有關?
 
非常了解
一般了解
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為調查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如下表所示:

(1)估計這60名乘客中候車時間少于10分鐘的人數;
(2)若從上表第三、四組的6人中隨機抽取2人作進一步的問卷調查,求抽到的兩人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某單位N名員工參加“社區低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統計的數據得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區間





人數

a
b
 
 
(1)求正整數a,b,N的值;
(2)現要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某市規定,高中學生三年在校期間參加不少于小時的社區服務才合格.教育部門在全市隨機抽取200位學生參加社區服務的數據,按時間段,,,
,(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區服務時間不少于90小時的學生人數,并估計
從全市高中學生中任意選取一人,其參加社區服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數很多)中任意選取3位學生,記為3位學生中參加社區服務時間不少于90小時的人數.試求隨機變量的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

關于統計數據的分析,有以下幾個結論,其中正確的個數為( )
①利用殘差進行回歸分析時,若殘差點比較均勻地落在寬度較窄的水平帶狀區域內,則說明線性回歸模型的擬合精度較高;
②將一組數據中的每個數據都減去同一個數后,期望與方差均沒有變化;
③調查劇院中觀眾觀后感時,從50排(每排人數相同)中任意抽取一排的人進行調查是分層抽樣法;
④已知隨機變量X服從正態分布N(3,1),且P(2≤X≤4)=0.682 6,則P(X>4)等于0.158 7
⑤某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的青年職工為7人,則樣本容量為15人。
A.2B.3C.4 D.5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以下四個命題,其中正確的是________.
①從勻速傳遞的產品生產流水線上,質檢員每20分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;
②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;
③在回歸直線方程=0.2x+12中,當解釋變量x每增加一個單位時,預報變量平均增加0.2個單位;
④對分類變量X與Y,它們的隨機變量K22)的觀測值k來說,k越小,“X與Y有關系”的把握程度越大.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,
得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為.
 
優秀
非優秀
合計
甲班
10
 
 
乙班
 
30
 
    合計
 
 
110
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视