精英家教網 > 高中數學 > 題目詳情

如圖,某小區有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數的圖象,且點M到邊OA距離為

(1)當時,求直路所在的直線方程;
(2)當為何值時,地塊OABC在直路不含泳池那側的面積取到最大,最大值是多少?

(1);(2)時,.

解析試題分析:(1)點M到邊OA距離為,則可設,當時,求切線的方程是一個常規問題,切線的斜率是處的導數,易求出直線的點斜式方程;(2)要求不含泳池一側的面積,就是要把這個面積表示為變量的函數,為此需要確定切線與線段的交點,當然也可能是與線段的交點,這作一個判斷或分類討論,面積函數解決后,用一般求最值的方法,則可解決問題.
試題解析:
(1)對函數求導得,,,又,所以切點,切線的方程為,即;
(2),過切點的切線
,令,故切線于點;
,得,又遞減,所以
故切線與OC交于點
地塊OABC在切線右上部分區域為直角梯形,
面積,當,。
考點:導數的應用、函數的最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數 
(1)當時,求的單調區間;
(2)若當恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數為定義域上的單調函數,且存在區間(其中,使得當時, 的取值范圍恰為,則稱函數上的正函數,區間叫做函數的等域區間.
已知上的正函數,求的等域區間;
試探求是否存在,使得函數上的正函數?若存在,請求出實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)判斷函數上的單調性,并用定義加以證明;
(Ⅱ)若對任意,總存在,使得成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是R上的奇函數,當取得極值.
(I)求的單調區間和極大值
(II)證明對任意不等式恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底,
(1)求的最值;
(2)若關于方程有兩個不同解,求的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上為增函數,且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調增函數,求的取值范圍;
(3)設,若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數, 上為增函數,且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調增函數,求的取值范圍;
(3)設,若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)當時,求函數的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數的取值范圍;
(3)當,時,方程有唯一實數解,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视