【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈[﹣2,0],使得f(x2)≤g(x1)成立,則實數a的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】近日,某公司對其生產的一款產品進行促銷活動,經測算該產品的銷售量P(單位:萬件)與促銷費用x(單位:萬元)滿足函數關系:p=3﹣ (其中0≤x≤a,a為正常數).已知生產該產品件數為P(單位:萬件)時,還需投入成本10+2P(單位:萬元)(不含促銷費用),產品的銷售價格定為(4+
)元/件,假定生產量與銷售量相等.
(1)將該產品的利潤y(單位:萬元)表示為促銷費用x(單位:萬元)的函數;
(2)促銷費用x(單位:萬元)是多少時,該產品的利潤y(單位:萬元)取最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( ,
),B(
,
).則下列說法錯誤的是( )
A.φ=
B.函數f(x)的一條對稱軸為x=
C.為了得到函數y=f(x)的圖象,只需將函數y=2sin2x的圖象向右平移 個單位
D.函數f(x)的一個單調減區間為[ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的焦距為2
,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2 .
(1)求橢圓E的方程及離心率;
(2)點P的坐標為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設直線MB,BP,NB的斜率依次成等差數列,探究m,n之間是否滿足某種數量關系,若是,請給出m,n的關系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (x>0),觀察:
f1(x)=f(x)= ,
f2(x)=f(f1(x))= ;
f3(x)=f(f2(x))= .
f4(x)=f(f3(x))=
…
根據以上事實,當n∈N*時,由歸納推理可得:fn(1)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正三角形中,過其中心
作邊
的平行線,分別交
,
與
,
,將
沿
折起到
的位置,使點
在平面
上的射影恰是線段
的中點
,則二面角
的平面角的大小是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別為橢圓C:
的左、右焦點,點
在橢圓上,且
軸,
的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)E,F是橢圓C上異于點的兩個動點,如果直線PE與直線PF的傾斜角互補,證明:直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列{an}的前n項和為Sn,且an和Sn滿足:4Sn=(an+1)2 (n=1,2,3……),
(1)求{an}的通項公式;(2)設bn= ,求{bn}的前n項和Tn;
(3)在(2)的條件下,對任意n∈N*,Tn都成立,求整數m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列是公差為2的等差數列,數列
滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數列,
的通項公式;
(2)設數列滿足
,數列
的前n項和為
,若不等式
對一切n∈N*恒成立,求實數λ的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com