【題目】已知函數f(x)=ax2+bx+1(a,b為實數),設,
(1)若f(-1)=0,且對任意實數x均有f(x)≥0成立,求F(x)的表達式;
(2)在(1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調函數,求實數k的取值范圍;
(3)設mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
【答案】(1).(2)
.(3) F(m)+F(n)>0.
【解析】
(1)由可得
;然后再根據f(x)≥0恒成立并結合判別式可得a=1,進而可得函數的解析式.(2)由題意可得
,根據函數有單調性可得對稱軸與所給區間的關系,從而可得k的取值范圍.(3)結合題意可得函數
為奇函數且在R上為增函數,再根據條件mn<0,m+n>0可得F(m)+F(n)>0.
(1)∵,
∴b=a+1.
∵f(x)≥0對任意實數x恒成立,
∴,
解得a=1.
∴f(x)=x2+2x+1.
故.
(2)由(1)知f(x)=x2+2x+1,
∴g(x)=f(x)-kx=x2+(2-k)x+1.
由g(x)在區間[-2,2]上是單調函數可得或
,
解得k≤-2或k≥6.
故k的取值范圍為.
(3)∵f(-x)=f(x),
∴f(x)為偶函數,
∴b=0.
又a>0,
∴f(x)在區間[0,+∞)為增函數.
對于F(x),當x>0時,;
當x<0時,,
∴,且F(x)在區間[0,+∞)上為增函數,
∴在
上為增函數.
由mn<0,知m,n異號,不妨設m>0,n<0,
則有m>-n>0,
∴,
∴.
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x),滿足當x>0時,f(x)>1,且對任意的x,y,有
,f(1)=2,且
.
(1)求f(0)的值;
(2)求證:對任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數h(x)滿足
①h(0)=1,h(1)=0;
②對任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調遞減.則稱h(x)為補函數.已知函數h(x)= (λ>﹣1,p>0)
(1)判函數h(x)是否為補函數,并證明你的結論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數h(x)的中介元,記p= (n∈N+)時h(x)的中介元為xn , 且Sn=
,若對任意的n∈N+ , 都有Sn<
,求λ的取值范圍;
(3)當λ=0,x∈(0,1)時,函數y=h(x)的圖象總在直線y=1﹣x的上方,求P的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發射后的軌跡在方程y=kx﹣ (1+k2)x2(k>0)表示的曲線上,其中k與發射方向有關.炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)某食品廠為了檢查一條自動包裝流水線的生產情況,隨機抽取該流水線上件產品作為樣本稱出它們的重量(單位:克),重量的分組區間為
,
, ,
,由此得到樣本的頻率分布直方圖,如圖所示.
(1)根據頻率分布直方圖,求重量超過克的產品數量;
(2)在上述抽取的件產品中任取
件,設
為重量超過
克的產品數量,求
的分布列;
(3)從該流水線上任取件產品,求恰有
件產品的重量超過
克的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代著名的數學著作有10部算書,被稱為“算經十書”.某校數學興趣小組甲、乙、丙、丁四名同學對古代著名的數學著作產生濃厚的興趣.一天,他們根據最近對這十部書的閱讀本數情況說了這些話,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他們說的這些話中,只有一個人說的是真實的,而這個人正是他們四個人中讀書本數最少的一個(他們四個人對這十部書閱讀本數各不相同).甲、乙、丙、丁按各人讀書本數由少到多的排列是( )
A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com