【題目】在平面直角坐標系中,對于直線
和點
、
,記
,若
,則稱點
,
被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點
,
被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點、
被直線
分隔;
(2)若直線是曲線
的分隔線,求實數
的取值范圍;
(3)動點M到點的距離與到y軸的距離之積為1,設點M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
【答案】(1)證明見解析(2)(3)
,證明見解析
【解析】
(1)根據點,
被直線l分隔的定義證明即可,
(2)先由直線與曲線無交點,利用判別式小于0可得的范圍,然后在曲線上取兩個點驗證是否被直線分隔,
(3)先求出軌跡的方程,然后證明軌跡方程與
軸無交點,再在軌跡
上取兩個點驗證是否被
軸分隔.
(1)由題意得:,
被直線
分隔;
(2)由題意得:直線與曲線
無交點,
,整理得
無解,即
,
又對任意的,點
和
在曲線
上,滿足
,所以點
和
被直線
分隔,
所求的k的范圍是
.
(3)由題意得:設,
,
化簡得點M的軌跡方程為
對任意的
,點
不是方程
的解
直線
與曲線E沒有交點,
又曲線E上的兩點和
對于直線
滿足
,
即點和
被直線
分隔,
直線y軸是E的分隔線.
科目:高中數學 來源: 題型:
【題目】某學生將語文、數學、英語、物理、化學、生物6科的作業安排在周六、周日完成,要求每天至少完成兩科,且數學,物理作業不在同一天完成,則完成作業的不同順序種數為( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點
,直線
,設圓
的半徑為1, 圓心在
上.
(1)若圓心也在直線
上,過點
作圓
的切線,求切線方程;
(2)若圓上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
是拋物線上橫坐標為4且位于
軸上方的點,點
到拋物線準線的距離等于5.過點
作
垂直于
軸,垂足為
的中點為
.
(1)求拋物線方程;
(2)過點作
,垂足為
,求點
的坐標;
(3)以點為圓心,
為半徑作圓
,當
是
軸上一動點時,討論直線
與圓
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調查了40名學生,根據學生的某次物理成績,得到
班學生物理成績的頻率分布直方圖和
班學生物理成績的頻數分布條形圖.
(Ⅰ)估計班學生物理成績的眾數、中位數(精確到
)、平均數(各組區間內的數據以該組區間的中點值為代表);
(Ⅱ)填寫列聯表,并判斷是否有的把握認為物理成績與班級有關?
物理成績 | 物理成績 | 合計 | |
| |||
| |||
合計 |
附:列聯表隨機變量
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“五一”期間,為了滿足廣大人民的消費需求,某共享單車公司欲投放一批共享單車,單車總數不超過100輛,現有A,B兩種型號的單車:其中A型車為運動型,成本為400元輛,騎行半小時需花費
元;B型車為輕便型,成本為2400元
輛,騎行半小時需花費1元
若公司投入成本資金不能超過8萬元,且投入的車輛平均每車每天會被騎行2次,每次不超過半小時
不足半小時按半小時計算
,問公司如何投放兩種型號的單車才能使每天獲得的總收入最多,最多為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com