【題目】某市電視臺為了宣傳,舉辦問答活動,隨機對該市15至65歲的人群進行抽樣,頻率分布直方圖及回答問題統計結果如表所示:
組號 | 分組 | 回答正確 | 回答正確的人數 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | a | 0.9 |
第3組 | [35,45) | 27 | x |
第4組 | [45,55) | b | 0.36 |
第5組 | [55,65) | 3 | y |
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取3人頒發幸運獎,求:所抽取的人中第3組至少有1人獲得幸運獎的概率.
【答案】
(1)解:第1組人數5÷0.05=100,
所以n=100÷0.1=1000,
第2組人數1000×0.2=200,所以a=200×0.9=180,
第3組人數1000×0.3=300,所以x=270÷300=0.9,
第4組人數1000×0.25=250,所以b=250×0.36=90,
第5組人數1000×0.15=150,所以y=3÷150=0.02
(2)解:第2,3,4組回答正確的人的比為180:270:90=2:3:1,
從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,
所以第2,3,4組每組應各依次抽取2人,3人,1人
(3)解:記抽取的6人中,第2組的記為a1,a2,第3組的記為b1,b2,b3,第4組的記為c,
則從6名學生中任取3名的所有可能的情況有20種,它們是:
其中記“第3組至少有1人”為事件A,則A的對立事件是“第3組的沒有選到”,
其基本事件個數是1個,即(a1,a2,c),
故所抽取的人中第3組至少有1人獲得幸運獎的概率為
【解析】(1)先求出第1組人數為100,從而得到n=1000,由此能求出求出a,b,x,y的值.(2)第2,3,4組回答正確的人的比為2:3:1,由此能求出第2,3,4組每組應各抽取的人數.(3)記抽取的6人中,第2組的記為a1 , a2 , 第3組的記為b1 , b2 , b3 , 第4組的記為c,由此利用列舉法能求出所抽取的人中第3組至少有1人獲得幸運獎的概率.
【考點精析】本題主要考查了頻率分布直方圖的相關知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為 ,則
的取值范圍為( )
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是邊長為2的正方形,PA=AD,F為PD的中點.
(1)求證:AF⊥平面PDC;
(2)求直線AC與平面PCD所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左右焦點分別為F1 , F2 , 且F2為拋物線
的焦點,C2的準線l被C1和圓x2+y2=a2截得的弦長分別為
和4.
(1)求C1和C2的方程;
(2)直線l1過F1且與C2不相交,直線l2過F2且與l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x軸上方,求四邊形AF1F2C的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a、b表示兩條直線,α、β表示兩個平面,則下列命題正確的是 . (填寫所有正確命題的序號) ①若a∥b,a∥α,則b∥α; ②若a∥b,aα,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某餐館一天中要購買A,B兩種蔬菜每斤的價格分別為2元和3元,根據需要,A種蔬菜至少要買6斤,B種蔬菜至少要買4斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.
(1)寫出一天中A種蔬菜購買的數量x和B種蔬菜購買的數量y之間的不等式組;
(2)在下面給定的坐標系中畫出(1)中不等式組表示的平面區域(用陰影表示),并求出它的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點.
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com