【題目】如圖,一隧道內設雙行線路,其截面由一長方形和一拋物線構成。為保證安全,要求行駛車輛頂部(設為平頂)與隧道頂部(拋物線)在豎直方向上的高度之差至少為0.5m,若行車道總寬度AB為6m,請計算通過隧道的車輛的限制高度(精確度為0.1m)
【答案】車輛通過隧道的限制高度是3.2米.
【解析】
根據題意可以建立適當的平面直角坐標系,從而可以得到拋物線的解析式,然后根據要求行駛車輛頂部(設為平頂)與隧道頂部在豎直方向上高度之差至少要有0.5m,可以得到當x=-3時,求出相應的y值,此時汽車的頂部離隧道的頂部距離至少是0.5m,從而可以求得車輛經過隧道時的限制高度是多少米.
取拋物線的頂點為原點,對稱軸為y軸,建立直角坐標系,c(4,-4),
設拋物線方程x2=-2py(p>0),將點C代入拋物線方程得p=2,
∴拋物線方程為x2=-4y,行車道總寬度AB=6m,
∴將x=3代入拋物線方程,y=-2.25m,
∴限度為
則車輛通過隧道的限制高度是3.2米.
科目:高中數學 來源: 題型:
【題目】某創業團隊擬生產兩種產品,根據市場預測,
產品的利潤與投資額成正比(如圖1),
產品的利潤與投資額的算術平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(注:利潤與投資額的單位均為萬元)
(1)分別將兩種產品的利潤
、
表示為投資額
的函數;
(2)該團隊已籌集到10 萬元資金,并打算全部投入兩種產品的生產,問:當
產品的投資額為多少萬元時,生產
兩種產品能獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣.
(1)若a>0,試判斷f(x)在定義域內的單調性;
(2)若f(x)在[1,e]上的最小值為,求實數a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求點C到平面的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com