【題目】某保險公司有一款保險產品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據經驗,若每份保單的保費在20元的基礎上每增加元,對應的銷量
(萬份)與
(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下5組
與
的對應數據:
據此計算出的回歸方程為.
(i)求參數的估計值;
(ii)若把回歸方程當作
與
的線性關系,用(Ⅰ)中求出的平均收益率估計此產品的收益率,每份保單的保費定為多少元時此產品可獲得最大收益,并求出該最大收益.
【答案】(Ⅰ);(Ⅱ)(i)
,(ii)見解析.
【解析】試題分析:(1)先根據頻率分布直方圖中小長方形面積等于對應區間概率求概率,再根據組中值與對應區間概率乘積的和為平均數可得平均收益率,(2)(i)根據回歸方程過點 ,先根據數據求平均值,再代入回歸方程求參數
的估計值;(ii)先根據收入等于銷量與每份保單的保費乘積得一個一元二次函數,根據二次函數對稱軸確定函數最值.
試題解析:(Ⅰ)區間中值依次為:0.05,0.15,0.25,0.35,0.45,0.55,
取值概率依次為:0.1,0.2,0.25,0.3,0.1,0.05,
平均收益率為
.
(Ⅱ)(i)
所以
(ii)設每份保單的保費為元,則銷量為
,則保費收入為
萬元,
當元時,保費收入最大為360萬元,
保險公司預計獲利為萬元.
科目:高中數學 來源: 題型:
【題目】過 做拋物線
的兩條切線,切點分別為
,
.若
.
(1)求拋物線 的方程;
(2) ,
,過
任做一直線交拋物線
于
,
兩點,當
也變化時,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是等邊三角形,側面AA1B1B為正方形,且AA1⊥平面ABC,D為線段AB上的一點.
(Ⅰ) 若BC1∥平面A1CD,確定D的位置,并說明理由;
(Ⅱ) 在(Ⅰ)的條件下,求二面角A1D﹣C﹣BC1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知任意角
以坐標原點
為頂點,
軸的非負半軸為始邊,若終邊經過點
,且
,定義:
,稱“
”為“正余弦函數”,對于“正余弦函數
”,有同學得到以下性質:
①該函數的值域為; ②該函數的圖象關于原點對稱;
③該函數的圖象關于直線對稱; ④該函數為周期函數,且最小正周期為
;
⑤該函數的遞增區間為.
其中正確的是__________.(填上所有正確性質的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+1|.
(Ⅰ) 解不等式f(x+8)≥10﹣f(x);
(Ⅱ) 若|x|>1,|y|<1,求證:f(y)<|x|f( ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市電視臺為了提高收視率而舉辦有獎問答活動,隨機對該市15~65歲的人群抽樣了 人,回答問題統計結果及頻率分布直方圖如圖表所示.
(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com