精英家教網 > 高中數學 > 題目詳情

【題目】已知a,b,c分別為△ABC內角A,B,C的對邊,
(Ⅰ)求角B的大;
(Ⅱ)若△ABC邊AC上的高h=b,求 的值.

【答案】解:(Ⅰ)由 . 根據正弦定理,可得: ,
即a﹣bcosC=csinB,
得:sinA﹣sinBcosC=sinCsinB.
B+C+A=π
∴sinA=sin(B+C)
∴sinBcosC+sinCcosB﹣sinBcosC=sinCsinB.
可得:sinCcosB=sinCsinB.
∵0<C<π,sinC≠0.
∴cosB=sinB
∵0<B<π.
∴B=
(Ⅱ)由題意,過B點作AC的高h=DB=b.設AD=m,DC=n,n+m=b.
則tanA= ,tanC=
可得 =sinB( )=sinB=

【解析】(Ⅰ)運用正弦定理結合三角形的內角和定理.即可得到A.(Ⅱ)根據△ABC邊AC上的高h=b,求出tanA和tanC,帶入化簡可得答案.
【考點精析】關于本題考查的正弦定理的定義,需要了解正弦定理:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設復數z1=(a2-4sin2θ)+(1+2cos θ)i,aR,θ(0,π),z2在復平面內對應的點在第一象限,且z=-3+4i.

(1)z2|z2|.

(2)z1z2,求θa2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高中社團進行社會實踐,對歲的人群隨機抽取n人進行了一次是否開通“微博”的調查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調查分別得到如圖所示統計表和各年齡段人數頻率分布直方圖:

完成以下問題:

(Ⅰ)補全頻率分布直方圖并求的值;

(Ⅱ)從歲年齡段的“時尚族”中采用分層抽樣法抽取人參加網絡時尚達人大賽,其中選取人作為領隊,記選取的名領隊中年齡在歲的人數為,求的分布列

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的函數f(x)=a+ (a,b∈R)有最大值和最小值,且最大值與最小值之和為6,則3a﹣2b=(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為 ,左右焦點分別為F1 , F2 , 以橢圓短軸為直徑的圓與直線 相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點F1、斜率為k1的直線l1與橢圓E交于A,B兩點,過點F2、斜率為k2的直線l2與橢圓E交于C,D兩點,且直線l1 , l2相交于點P,若直線OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD滿足kOA+kOB=kOC+kOD , 求證:動點P在定橢圓上,并求出此橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2-ln x,a∈R.

(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程.

(2)討論f(x)的單調性.

(3)是否存在a,使得方程f(x)=2有兩個不等的實數根?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構造函數f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因為對一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結論寫出關于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結論加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在圓心角為90°的扇形AOB中,以圓心O作為起點作射線OC,OD,則使∠AOC+∠BOD<45°的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) , =﹣k + ,m∈R,k、t為正實數.
(1)若 ,求m的值;
(2)若 ,求m的值;
(3)當m=1時,若 ,求k的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视