精英家教網 > 高中數學 > 題目詳情
精英家教網已知一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內接圓柱. 如圖所示.
(1)若設圓柱底面半徑為r,求證:r=R(1-
xH
);
(2)當x為何值時,圓柱的側面積最大?并求出這個最大值.
分析:(1)我們可以畫出圓錐的軸截面,將空間問題轉化為平面問題,然后根據相似三角形的性質和比例的性質,易得到結論.
(2)由圓柱的側面積公式,我們易得S=2πrx=2πxR(1-
x
H
),展開后易得一個關于x的二次函數解析式,根據二次函數的性質易得到其最大值,及對應的x的值.
解答:解:(1)根據已知,如下圖所示
精英家教網
記軸截面為△SAB,EFGH為內接矩形,F在SB上.
x
H
=
BF
SB
,
r
R
=
SF
SB

x
H
+
r
R
=1
,
r=R(1-
x
H
).(4分)
(2)S=2πrx=2πxR(1-
x
H
)(6分)
=
2πR
H
[-(x-
H
2
)
2
+
H2
4
]
(8分)
當x=
H
2
時,ymax=
πRH
2
(10分)
點評:本題考查的知識點是圓錐的幾何特征及圓錐及圓柱的側面積公式,將空間問題轉化為平面問題是解答立體幾何題最常用的思路.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知一個圓錐的底面半徑為R,高為h,在其中有一個高為x的內接圓柱(其中R,h均為常數).
(1)當x=
23
h時,求內接圓柱上方的圓錐的體積V;
(2)當x為何值時,這個內接圓柱的側面積最大?并求出其最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一個圓錐的底面半徑為R,高為h,在圓錐內部有一個高為x的內接圓柱.
(1)畫出圓錐及其內接圓柱的軸截面;
(2)求圓柱的側面積;               
(3)當x為何值時,圓柱的側面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知一個圓錐的底面半徑為R=1,高為h=2.,一個圓柱的下底面在圓錐的底面上,且圓柱的上底面為圓錐的截面,設圓柱的高為x.
(1)求圓柱的側面積.
(2)x為何值時,圓柱的側面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一個圓錐的底面半徑為R,高為h,在圓錐內部有一個高為x的內接圓柱.
(1)畫出圓錐及其內接圓柱的軸截面;
(2)求圓柱的側面積;
(3)x為何值時,圓柱的側面積最大?最大側面積為多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视