【題目】商家生產一種產品,需要先進行市場調研,計劃對北京、上海、廣州三地進行市場調研,待調研結束后決定生產的產品數量,下列四種方案中最可取的是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數(其中
,
)的圖象關于點
成中心對稱,且與點
相鄰的一個最低點為
,則對于下列判斷:
①直線是函數
圖象的一條對稱軸;②函數
為偶函數;
③函數與
的圖象的所有交點的橫坐標之和為
.
其中正確的判斷是__________________.(寫出所有正確判斷的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上且以4為周期的奇函數,當x∈(0,2)時,f(x)=ln(x2﹣x+b),若函數f(x)在區間[﹣2,2]上的零點個數為5,則實數b的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數x都成立.
(1)求函數f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間為了規定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數據如下:
零件的個數 | 2 | 3 | 4 | 5 |
加工的時間 | 2.5 | 3 | 4 | 4.5 |
(Ⅰ)在給定的坐標系中畫出表中數據的散點圖;
(Ⅱ)試對與
的關系進行相關性檢驗,如
與
具有線性相關關系,求出
對
的回歸直線方程;
(Ⅲ)試預測加工個零件需要多少時間?
參考數據:,
.
附:);
,
;
相關性檢驗的臨界值表
n-2 | 小概率 | n-2 | 小概率 | n-2 | 小概率 | |||
0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | |||
1 | 0.997 | 1 | 4 | 0.811 | 0.917 | 7 | 0.666 | 0.798 |
2 | 0.950 | 0.990 | 5 | 0.754 | 0.874 | 8 | 0.632 | 0.765 |
3 | 0.878 | 0.959 | 6 | 0.707 | 0.834 | 9 | 0.602 | 0.735 |
注:表中的n為數據的組數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察下列各等式(i為虛數單位):
(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;
(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;
(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;
(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.
記f(x)=cos x+isin x.
猜想出一個用f (x)表示的反映一般規律的等式,并證明其正確性;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=sin(ωx﹣ )+sin(ωx﹣
),其中0<ω<3,已知f(
)=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數y=f(x)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向左平移 個單位,得到函數y=g(x)的圖象,求g(x)在[﹣
,
]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當日最低氣溫
(單位:
)的數據,如下表:
2 | 5 | 8 | 9 | 11 | |
12 | 10 | 8 | 8 | 7 |
(1)求出與
的回歸方程
;
(2)判斷與
之間是正相關還是負相關;若該地1月份某天的最低氣溫為6
,請用所求回歸方程預測該店當日的營業額.
附: 回歸方程中,
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com