【題目】每年的金秋十月,越野e族阿拉善英雄會在內蒙古自治區阿拉善盟阿左旗騰格里沙漠舉行,該項目已打造成集沙漠競技運動、汽車文化極致體驗、主題休閑度假為一體的超級汽車文化賽事娛樂綜合體.為了減少對環境的污染,某環保部門租用了特制環保車清潔現場垃圾.通過查閱近5年英雄會參會人數(萬人)與沙漠中所需環保車輛數量
(輛),得到如下統計表:
參會人數 | 11 | 9 | 8 | 10 | 12 |
所需環保車輛 | 28 | 23 | 20 | 25 | 29 |
(1)根據統計表所給5組數據,求出關于
的線性回歸方程
.
(2)已知租用的環保車平均每輛的費用(元)與數量
(輛)的關系為
.主辦方根據實際參會人數為所需要投入使用的環保車,
每輛支付費用6000元,超出實際需要的車輛,主辦方不支付任何費用.預計本次英雄會大約有14萬人參加,根據(Ⅰ)中求出的線性回歸方程,預測環保部門在確保清潔任務完成的前提下,應租用多少輛環保車?獲得的利潤是多少?(注:利潤
主辦方支付費用
租用車輛的費用).
參考公式:
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,離心率
,過
且與
軸垂直的直線與橢圓
在第一象限內的交點為
,且
.
(1)求橢圓的方程;
(2)過點的直線
交橢圓
于
兩點,當
時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記,其中
為函數
的導數
若對于
,
,則稱函數
為D上的凸函數.
求證:函數
是定義域上的凸函數;
已知函數
,
為
上的凸函數.
求實數a的取值范圍;
求函數
,
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學利用國慶節進行社會實踐,對歲的人群隨機抽取
人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳族的人數 | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補全頻率分布直方圖并求、
、
的值;
(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗活動,如何抽。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的部分圖象如圖所示,且相鄰的兩個最值點的距離為
.
(1)求函數的解析式;
(2)若將函數的圖象向左平移1個單位長度后得到函數
的圖象,關于
的不等式
在
上有解,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點
,平行于
的直線
在
軸上的截距為
,直線
交橢圓于
兩個不同點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠要建造一個長方形無蓋蓄水池,其容積為立方米,深為
.如果池底每平方米的造價為
元,池壁每平方米的造價為
元,那么怎樣設計水池能使總造價最低(設蓄水池池底的相鄰兩邊邊長分別為
,
)?最低總造價是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25-x萬元(國家規定大貨車的報廢年限為10年).
(1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com