已知函數.
(Ⅰ)當時,討論
的單調性;
(Ⅱ)設時,若對任意
,存在
,使
,求實數
的取值范圍.
【解析】(I)原函數的定義域為
所以,當所以
此時函數上是增函數;在(0,1)上是減函數;
所以此時函數是減函數;
當
解得(舍去),此時函數
上是增函數;
在(0,1)上是減函數;
此時函數
上是減函數;
(Ⅱ)當時,
在(0,1)上是減函數,在(1,2)上是增函數,所以對任意
,
有,又已知存在
,使
,
所以,
,
即存在,使
,
即,即
,
所以,解得
,即實數
取值范圍是
。
【命題意圖】本題將導數、二次函數、不等式知識有機的結合在一起,考查了利用導數研究函數的單調性、利用導數求函數的最值以及二次函數的最值問題,考查了同學們分類討論的數學思想以及解不等式的能力;考查了學生綜合運用所學知識分析問題、解決問題的能力。
(1)直接利用函數與導數的關系討論函數的單調性;(2)利用導數求出的最小值、利用二次函數知識或分離常數法求出
在閉區間[1,2]上的最大值,然后解不等式求參數。
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數學 來源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數學 來源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com