科目:高中數學 來源: 題型:
C | 0 m |
C | 1 m |
C | m m |
查看答案和解析>>
科目:高中數學 來源: 題型:
Sn |
S2n |
1 |
Sn |
1 |
Sh |
查看答案和解析>>
科目:高中數學 來源:上海市盧灣區2010屆高三第二次模擬考試數學文科試題 題型:044
從數列{an}中取出部分項,并將它們按原來的順序組成一個數列,稱之為數列{an}的一個子數列.
設數列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數列.
(1)若a1,a2,a5成等比數列,求其公比q.
(2)若a1=7d,從數列{an}中取出第2項、第6項作為一個等比數列的第1項、第2項,試問該數列是否為{an}的無窮等比子數列,請說明理由.
(3)若a1=1,從數列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數列的第1項、第2項.求證:當t為大于1的正整數時,該數列為{an}的無窮等比子數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)設{bn}是項數為7的“對稱數列”,其中b1,b2,b3,b4是等差數列,且b1=2,b4=11.依次寫出{bn}的每一項.
(2)設{cn}是項數為2k-1(正整數k>1)的“對稱數列”,其中ck,ck+1,…,c2k-1是首項為50,公差為-4的等差數列.記{cn}各項的和為S2k-1,當k為何值時,S2k-1取得最大值?并求出S2k-1的最大值.
(3)對于確定的正整數m>1,寫出所有項數不超過2m的“對稱數列”,使得1,2,22,…,2m-1依次是該數列中連續的項;當m>1 500時,求其中一個“對稱數列”前2 008項的和S2008.
(文)如果有窮數列a1,a2,a3,…,am(m為正整數)滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數列”.例如,數列1,2,5,2,1與數列8,4,2,2,4,8都是“對稱數列”.
(1)設{bn}是7項的“對稱數列”,其中b1,b2,b3,b4是等差數列,且b1=2,b4=11.依次寫出{bn}的每一項;
(2)設{cn}是49項的“對稱數列”,其中c25,c26,…,c49是首項為1,公比為2的等比數列,求{cn}各項的和S;
(3)設{dn}是100項的“對稱數列”,其中d51,d52,…,d100是首項為2,公差為3的等差數列,求{dn}前n項的和Sn(n=1,2,…,100).
查看答案和解析>>
科目:高中數學 來源:2008年上海市閔行區高考數學二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com