【題目】已知函數,
,
.
(1)求函數的單調增區間;
(2)令,且函數
有三個彼此不相等的零點0,m,n,其中
.
①若,求函數
在
處的切線方程;
②若對,
恒成立,求實數t的去取值范圍.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為橢圓
的右焦點,C的準線與E交于P,Q兩點,且
.
(1)求E的方程;
(2)過E的左頂點A作直線l交E于另一點B,且BO(O為坐標原點)的延長線交E于點M,若直線AM的斜率為1,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),記數列{}的前n項和為Sn,則下列選項中與S2019的值最接近的是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,離心率為
,
為橢圓上一動點(異于左右頂點),
面積的最大值為
.
(1)求橢圓的方程;
(2)若直線與橢圓
相交于點
兩點,問
軸上是否存在點
,使得
是以
為直角頂點的等腰直角三角形?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“
”,“
”,“
”等模式.其中“
”模式的操作又更受歡迎,即語數外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學生的選科情況,從高二年級的2000名學生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學生進行調查.
(1)已知抽取的n名學生中含男生110人,求n的值及抽取到的女生人數;
(2)在(1)的情況下對抽取到的n名同學“選物理”和“選歷史”進行問卷調查,得到下列2×2列聯表.請將列聯表補充完整,并判斷是否有99%的把握認為選科目與性別有關?
選物理 | 選歷史 | 合計 | |
男生 | 90 | ||
女生 | 30 | ||
合計 |
(3)在(2)的條件下,從抽取的“選歷史”的學生中按性別分層抽樣再抽取5名,再從這5名學生中抽取2人了解選政治、地理、化學、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線E:(
,
)的左、右焦點分別為
,
,已知點
為拋物線C:
的焦點,且到雙曲線E的一條漸近線的距離為
,又點P為雙曲線E上一點,滿足
.則
(1)雙曲線的標準方程為______;
(2)的內切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面四邊形中,E,F是
,
中點,
,
,
,將
沿對角線
折起至
,使平面
平面
,則四面體
中,下列結論不正確的是( )
A.平面
B.異面直線
與
所成的角為90°
C.異面直線與
所成的角為60°D.直線
與平面
所成的角為30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:極坐標與參數方程]
在直角坐標系中,曲線
的參數方程為
(
是參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)若射線
與曲線
交于
,
兩點,與曲線
交于
,
兩點,求
取最大值時
的值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com