精英家教網 > 高中數學 > 題目詳情
a為何值時,對區間[0,3]的任意實數x,不等式log(2a2-1)(2x+2)<-1恒成立.
分析:由0≤x≤3⇒2≤2+2x≤8,由對數函數的性質可知,0<2a2-1<1,且2x+2>
1
2a2-1
在x∈[0,3]時恒成立,通過構造函數h(x)=
1
2x+2
,利用其單調性可求得h(x)max=h(0)=
1
2
,從而可求得a的取值范圍.
解答:解:∵0≤x≤3,
∴2≤2+2x≤8,
log(2a2-1)(2x+2)<-1<0,
∴0<2a2-1<1,
1
2
<a2<1①
∵又當x∈[0,3]時,log(2a2-1)(2x+2)<-1=log(2a2-1)
1
2a2-1
恒成立,
由對數函數y=logtx(0<t<1)單調遞減的性質得:
2x+2>
1
2a2-1
在x∈[0,3]時恒成立
∴2a2-1>
1
2x+2
(0≤x≤3)恒成立,
令h(x)=
1
2x+2
,顯然h(x)=
1
2x+2
在區間[0,3]上單調遞減,
∴h(x)max=h(0)=
1
2
,
∴2a2-1>
1
2

由①②得
3
4
<a2<1,
解得-1<a<-
3
2
3
2
<a<1.
∴實數a的取值范圍為(-1,-
3
2
)∪(
3
2
,1).
點評:本題考查對數不等式的解法,著重考查對數函數的性質與恒成立問題,考查構造函數思想與轉化思想的綜合應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax2+8x+3(a<0)
(1)a=-2時,對x∈[0,t](t>0),f(x)≥-5總成立,求t的最大值;
(2)對給定負數a,有一個最大正數g(a),使得在整個區間[0,g(a)]上,不等式|f(x)|≤5都成立,問:a為何值時,g(a)最大?

查看答案和解析>>

科目:高中數學 來源:中學教材全解 高中數學 必修1(人教A版) 人教A版 題型:044

a為何值時,對區間[0,3]上的任意實數x,不等式(2x+2)<-1成立.

查看答案和解析>>

科目:高中數學 來源:新課標教材全解高中數學人教A版必修1 人教A版 題型:044

a為何值時,對區間[0,3]上的任意實數x,不等式(2x+2)<-1成立.

查看答案和解析>>

科目:高中數學 來源:廣西桂林十八中2010屆高三第四次月考、文科數學試卷 題型:044

已知函數f(x)=ax3-3x+1(a∈R).

(Ⅰ)若函數f(x)在區間(3,5)上不存在極值,求a的取值范圍;

(Ⅱ)a為何值時,對任意x∈[-1,1]恒有f(x)≥0成立.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视