(本題滿分16分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用的舊墻需維修),其他三面圍墻要新建,在舊墻對面的新墻上要留一個寬度為2m的進出口,如圖所示已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻長度為x(單位:m),修建此矩形場地圍墻的總費用為y(單位:元)
⑴將y表示為x的函數;
⑵寫出f(x)的單調區間,并證明;
⑶根據⑵,試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
解:⑴如圖,設矩形的另一邊長為a m
則y=45x+180(x-2)+180×2a=225x+360a-360
由已知 ax=360a=
∴y=225x+-360(x>0) ……………………………………………6′
⑵任取x1>x2>0
y1-y2=225(x1-x2)+
=(x1-x2)( 225-) ……………………………………10′
∴x1x2>()2=242時, y1>y2
x1x2<24
時,
y1
y2
∴x1>x2≥24時
y1>y2 24> x1>x2>0時
y1<y2
即f(x)在(0,24)單調減,在(24,+∞)單調增 …………………14′
⑶x=24時,修建圍墻的總費用最小,最小費用為10440元…………………16
【解析】略
科目:高中數學 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(
,
、
是常數,且
),對定義域內任意
(
、
且
),恒有
成立.
(1)求函數的解析式,并寫出函數的定義域;
(2)求的取值范圍,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分16分)已知數列的前
項和為
,且
.數列
中,
,
.(1)求數列
的通項公式;(2)若存在常數
使數列
是等比數列,求數列
的通項公式;(3)求證:①
;②
.
查看答案和解析>>
科目:高中數學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數學 來源:2010年上海市徐匯區高三第二次模擬考試數學卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數
(1)判斷并證明在
上的單調性;
(2)若存在,使
,則稱
為函數
的不動點,現已知該函數有且僅有一個不動點,求
的值;
(3)若在
上恒成立 , 求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com