已知直線l:y=kx+2(k為常數)過橢圓+
=1(a>b>0)的上頂點B和左焦點F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d≥,求橢圓離心率e的取值范圍.
科目:高中數學 來源: 題型:解答題
如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N (點M在點N的右側),且。橢圓D:
的焦距等于
,且過點
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線
斜率的范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,曲線
的參數方程為
(
為參數)。
若以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(其中
為常數)
(1)當時,曲線
與曲線
有兩個交點
.求
的值;
(2)若曲線與曲線
只有一個公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
中心在坐標原點,焦點在軸上的橢圓的離心率為
,且經過點
。若分別過橢圓的左右焦點
、
的動直線
、
相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率
、
、
、
滿足
.
(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓:
的離心率為
,點
、
,原點
到直線
的距離為
.
(1)求橢圓的方程;
(2)設點,點
在橢圓
上(與
、
均不重合),點
在直線
上,若直線
的方程為
,且
,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
過拋物線的焦點
作傾斜角為
的直線交拋物線于
、
兩點,過點
作拋物線的切線
交
軸于點
,過點
作切線
的垂線交
軸于點
。
(1) 若,求此拋物線與線段
以及線段
所圍成的封閉圖形的面積。
(2) 求證:;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線和橢圓都經過點,它們在
軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點
都滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直線與橢圓
交于
,
兩點,已知
,
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com