精英家教網 > 高中數學 > 題目詳情
設函數f(x)=sin(ωx+)-1(ω>0)的導數f′(x)的最大值為3,則f(x)的圖象的一條對稱軸的方程是( )
A.x=
B.x=
C.x=
D.x=
【答案】分析:先對函數求導,由導數f′(x)的最大值為3,可得ω的值,從而可得函數的解析式,然后結合三角函數的性質可得函數的對稱軸處取得函數的最值從而可得.
解答:解:對函數求導可得,
由導數f′(x)的最大值為3可得ω=3
∴f(x)=sin(3x+)-1
由三角函數的性質可得,函數的對稱軸處將取得函數的最值結合選項,可得x=
故選A
點評:本題主要考查了函數的求導的基本運算,三角函數的性質:對稱軸處取得函數的最值的應用,屬于基礎試題,試題難度不大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(
π8
,-1).
(1)求φ;  
(2)求函數y=f(x)的周期和單調增區間;
(3)在給定的坐標系上畫出函數y=f(x)在區間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(2π+?)(-π<?<0),y=f(x)圖象的一條對稱軸是直線x=
π8

(Ⅰ)求?;
(Ⅱ)求函數y=f(x)的單調增區間;
(Ⅲ)證明直線5x-2y+c=0與函數y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=
π8

(1)求φ;
(2)怎樣由函數y=sin x的圖象變換得到函數f(x)的圖象,試敘述這一過程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)將函數f(x)的圖象向右平移
π
3
個單位長度,得到函數g(x)的圖象,求g (x)在區間[-
π
6
,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),給出以下四個論斷:
①它的圖象關于直線x=
π
12
對稱;        
②它的周期為π;
③它的圖象關于點(
π
3
,0)對稱;      
④在區間[-
π
6
,0]上是增函數.
以其中兩個論斷作為條件,余下兩個論斷作為結論,寫出你認為正確的兩個命題:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视