精英家教網 > 高中數學 > 題目詳情
函數y=
12
x2-lnx
的單調遞減區間為
(0,1]
(0,1]
分析:根據題意,先求函數y=
1
2
x2-lnx
的定義域,進而求得其導數,即y′=x-
1
x
=
x2-1
x
,令其導數小于等于0,可得
x2-1
x
≤0,結合函數的定義域,解可得答案.
解答:解:對于函數y=
1
2
x2-lnx
,易得其定義域為{x|x>0},
y′=x-
1
x
=
x2-1
x
,
x2-1
x
≤0,
又由x>0,則
x2-1
x
≤0?x2-1≤0,且x>0;
解可得0<x≤1,
即函數y=
1
2
x2-lnx
的單調遞減區間為(0,1],
故答案為(0,1]
點評:本題考查利用導數求函數的單調區間,注意首先應求函數的定義域.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數y=f(x)的表達式和切線l的方程;
(2)當x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,某小區有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內修一條與池邊AE相切的直路l(寬度不計),切點為M,并把該地塊分為兩部分.現以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數y=-
1
2
x2+2(0≤x≤2
的圖象,且點M到邊OA距離為t(0<t<2).
(Ⅰ)當t=
1
2
時,求直路l所在的直線方程;
(Ⅱ)當t為何值時,地塊OABC在直路l不含泳池那側的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2x(ex-1)-x2(x∈R).
(1)求證:函數f(x)有且只有兩個零點;
(2)已知函數y=g(x)的圖象與函數h(x)=-
1
2
f(-x)-
1
2
x2+x的圖象關于直線x=l對稱.證明:當x>l時,h(x)>g(x);
(3)如果一條平行x軸的直線與函數y=h(x)的圖象相交于不同的兩點A和B,試判斷線段AB的中點C是否屬于集合M={(x,y)||x|+|y|≤1},并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鷹潭一模)A﹑B﹑C是直線l上的三點,向量
OA
OB
OC
滿足:
OA
-[y+2f'(1)]•
OB
+ln(x+1)•
OC
=
0
;
(Ⅰ)求函數y=f(x)的表達式;          
(Ⅱ)若x>0,證明f(x)>
2x
x+2

(Ⅲ)當
1
2
x2≤f(x2)+m2-2bm-3
時,x∈[-1,1]及b∈[-1,1]都恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•成都一模)已知函數f(x)=
1
2
x2-mln
1+2x
+mx-2m
,m<0.
(I)當m=-1時,求函數y=f(x)-
x
3
的單調區間;
(II)已知m≤-
e
2
(其中e是自然對數的底數),若存在實數x0∈(-
1
2
e-1
2
]
,使f(x0)>e+1成立,證明:2m+e+l<0;
(III)證明:
n
k=1
8k-3
3k2
>ln
(n+1)(n+2)
2
(n∈N*)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视