精英家教網 > 高中數學 > 題目詳情

【題目】如圖,程序框圖的輸出結果為-18,那么判斷框表示的“條件”應該是

A. ? B? C? D?

【答案】C

【解析】

試題分析:執行程序框圖,有

s=6,i=1

第1次執行循環體,有m=4,s=10,i=2

不滿足條件,第2次執行循環體,有m=2,s=12,i=3

不滿足條件,第3次執行循環體,有m=0,s=12,i=4

不滿足條件,第4次執行循環體,有m=-2,s=10,i=5

不滿足條件,第5次執行循環體,有m=-4,s=6,i=6

不滿足條件,第6次執行循環體,有m=-6,s=0,i=7

不滿足條件,第7次執行循環體,有m=-8,s=-8,i=8

不滿足條件,第8次執行循環體,有m=-10,s=-18,i=9

根據題意,此時應該滿足條件,退出執行循環體,輸出s的值為-18.

故判斷框表示的條件應該是i>8?

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某中學舉行了一次環保知識競賽活動. 為了了解本次競賽學生成績情況,從中抽取了部分學生的分數得分取正整數,滿分為100分作為樣本樣本容量為進行統計. 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖圖中僅列出了得分在[50,60,[90,100]的數據.

1求樣本容量和頻率分布直方圖中的,的值;

2在選取的樣本中,從競賽成績是80分以上含80分的同學中隨機抽取3名同學到市政廣場參加環保知識宣傳的志愿者活動,設表示所抽取的3名同學中得分在[80,90的學生人數,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當x∈[1,4]時,求函數的值域;

2)如果對任意的x∈[1,4],不等式恒成立,求實數k的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商品進貨價每件50元,據市場調查,當銷售價格(每件x元)在50x 80時,每天售出的件數為P=,每天獲得的利潤為y(元)

1)寫出關于x的函數y的表達式;

2)若想每天獲得的利潤最多,問售價應定為每件多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在長方體中,分別是的中點,,過三點的的平面截去長方體的一個角后.得到如圖所示的幾何體,且這個幾何體的體積為

(1)求證:平面;

(2)求的長;

(3)在線段上是否存在點,使直線垂直,如果存在,求線段的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設關于的一元二次方程.

(1)若是從0,1,2,3四個數中任取的一個數,是從0,1,2三個數中任取的一個數,求上述方程有實根的概率;

(2)若是從區間任取的一個數,是從區間任取的一個數,求上述方程有根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC.E是PC的中點,作EF⊥PB交PB于點F.

1)證明PA∥平面EDB;

2)證明PB⊥平面EFD;

3)求二面角C-PB-D的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-1《幾何證明選講》

已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,AC∥DE,AC與BD相交于H點

1求證:BD平分∠ABC;

2若AB=4,AD=6,BD=8,求AH的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從社會效益和經濟效益出發,某地投入資金進行生態環境建設,并以此發展旅游產業.根據規劃,本年度投入萬元,以后每年投入將比上年減少.本年度當地旅游業收入估計為萬元,由于該項建設對旅游業的促進作用,預計今后的旅游業收入每年會比上年增加

)設年內(本年度為第一年)總投入為萬元,旅游業總收入為萬元.寫出的表達式;

)至少經過幾年旅游業的總收入才能超過總投入?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视