(本小題滿分14分)
已知函數f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)當b=0時,若對x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實數k的取值范圍;
(2)設h(x)的圖象為函數f (x)和g(x)圖象的公共切線,切點分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求證:x1>1>x2;
②若當x≥x1時,關于x的不等式ax2-x+xe+1≤0恒成立,求實數a的取值范圍.
(1)[,e](2)①分別求f(x)和g(x)在點(x1, f (x1))和(x2, g(x2))的切線,記為公切線,所以斜率和截距分別相同,從而得證結論;②(-∞,1]
【解析】
試題分析:(1)依題意對x∈(0,+∞)均有ex≥kx≥lnx成立,
即對任意x∈(0,+∞)均有
≥k≥
成立, ……1分
∴()min≥k≥
,
因為=
,故
在(0,1)上減,(1,+∞)增,
∴()min=e,
又 ,故
在(0,e)上減,(e,+∞)增,
∴ ,即k的取值范圍是[
,e]
. ……5分
(2)由題知:h(x)即為y-e= e
(x-x1)即y=e
·x+ e
-x1 e
,
也為y=lnx2=即y=
+lnx2-1,
∴, ……6分
又x1=0 ∴e>1 即
>1
x1>1即x1>1>x2, ……8分
(3)令F(x)=ax2-x+xe+1(x≥x1),
∴F′(x)= -1-xe+e
=-1+e
(1-x)( x≥x1)
又x≥x1>1
F′(x)= -1-xe+e
=-1+e
(1-x)<0,
即F(x)=ax2-x+xe+1(x≥x1)單減,
所以只要F(x)≤F(x1)=
ax2-x1+1xe+1≤0,
即a+ x1-x1e+ e
≤0. ……12分
由,
∴,
即
故只要≤0得:a≤1,
綜上,實數a的取值范圍是(-∞,1]. ……14分
考點:本小題主要考查利用導數研究函數的單調性、極值、最值等和利用導數求曲線的切線,和利用導數解決恒成立問題,考查學生綜合運算所學知識分析問題、解決問題的能力和運算求解能力.
點評:導數是研究函數性質的有力工具,要熟練應用,而恒成立問題一般要轉化為最值問題解決.
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com