【題目】設橢圓
(
)的左、右焦點分別為
,過
的直線交橢圓于
,
兩點,若橢圓
的離心率為
,
的周長為
.
(1)求橢圓的方程;
(2)設不經過橢圓的中心而平行于弦的直線交橢圓
于點
,
,設弦
,
的中點分別為
,證明:
三點共線.
科目:高中數學 來源: 題型:
【題目】“吸煙有害健康,吸煙會對身體造成傷害”,哈爾濱市于2012年5月31日規定室內場所禁止吸煙.美國癌癥協會研究表明,開始吸煙年齡X分別為16歲、18歲、20歲和22歲者,其得肺癌的相對危險度Y依次為15.10,12.81,9.72,3.21;每天吸煙支數U分別為10,20,30者,其得肺癌的相對危險度V分別為7.5,9.5和16.6,用表示變量X與Y之間的線性相關系數,用r2表示變量U與V之間的線性相關系數,則下列說法正確的是( )
A.r1=r2B.r1>r2>0
C.0<r1<r2D.r1<0<r2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xln x-aex(e為自然對數的底數)有兩個極值點,則實數a的取值范圍是( )
A. B.(0,e)
C. D.(-∞,e)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響.對近
年的年宣傳費
和年銷售量數據
作了初步處理,得到下面的散點圖及一些統計量的值.
表中 ,
.附:對于一組數據
,
,
,
,其回歸直線
的斜率和截距的最小二乘法估計分別為
,
.
(1)根據散點圖判斷, 與
在哪一個適宜作為年銷售量
關于年宣傳費
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據1小問的判斷結果及表中數據,建立 關于
的回歸方程;
(3)已知這種產品的年利潤 與
的關系為
.根據2小問的結果回答下列問題:
①2年宣傳費 時,年銷售量及年利潤的預報值是多少?
②3年宣傳費為何值時,年利潤的預報值最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
某學校用簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間(單位:分鐘)進行調查,結果如下:
t | ||||||
男同學人數 | 7 | 11 | 15 | 12 | 2 | 1 |
女同學人數 | 8 | 9 | 17 | 13 | 3 | 2 |
若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動.
(i)求抽取的4位同學中既有男同學又有女同學的概率;
(ii)記抽取的“讀書迷”中男生人數為,求
的分布列和數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三家企業產品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業下列說法錯誤的是( )
A.成本最大的企業是丙企業B.費用支出最高的企業是丙企業
C.支付工資最少的企業是乙企業D.材料成本最高的企業是丙企業
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等邊的邊長為3,點
分別為
上的點,且滿足
(如圖1),將
沿
折起到
的位置,使二面角
成直二面角,連接
,
(如圖2)
(1)求證: 平面
;
(2)在線段上是否存在點
,使直線
與平面
所成的角為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的普通方程為
,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的普通方程;
(2)直線與曲線
在第一象限內的交點為
,過點
的直線
交曲線
于
兩點,且
的中點為
,求直線
的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com