精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標原點).

1)求橢圓的標準方程.

2)已知動直線與圓相切,且與橢圓交于兩點.是否存在實數,使得?若存在,求出的值;若不存在,請說明理由.

【答案】1;(2)存在

【解析】

1)根據焦距和橢圓的幾何意義即可求出橢圓標準方程;

2)分別對斜率不存在和斜率存在兩種情況討論,相切即圓心到直線距離等于半徑,即向量的數量積為零,進行代數運算即可求解.

1)因為的最小值是,所以,

因為橢圓的焦距為,所以,即

所以,

故橢圓的標準方程是;

2)①當直線的斜率不存在時,

因為直線與圓相切,所以直線的方程為,

則直線與橢圓的交點為

因為,所以,所以,即

②當直線的斜率存在時,可設直線的方程為,,.

聯立,整理得,

,

因為,在直線上,所以,

,代入上式,得,

因為,所以,即,

因為動直線與圓相切,所以,所以,即,

綜上,存在,使得.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的方程為,圓軸相切于點,與軸正半軸相交于兩點,且,如圖1.

1)求圓的方程;

2)如圖1,過點的直線與橢圓相交于、兩點,求證:射線平分

3)如圖2所示,點、是橢圓的兩個頂點,且第三象限的動點在橢圓上,若直線軸交于點,直線軸交于點,試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示多面體,其底面為矩形且,四邊形為平行四邊形,點在底面內的投影恰好是的中點.

(1)已知為線段的中點,證明:平面;

(2)若二面角大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了解某產品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數據進行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數據中選取5組數據求純利潤關于銷售收入的線性回歸方程,再用剩下的2組數據進行檢驗.假設選取的是2月至6月的數據.

1)求純利潤關于銷售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計數據與檢驗數據的誤差均不超過0.1萬元,則認為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

參考公式:,;參考數據:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】眾所周知,城市公交車的數量太多會造成資源的浪費,太少又難以滿足乘客的需求,為此,某市公交公司在某站臺的50名候車乘客中隨機抽取10名,統計了他們的候車時間(單位:分鐘),得到下表.

候車時間

人數

1

4

2

2

1

1)估計這10名乘客的平均候車時間(同一組中的每個數據可用該組區間的中點值代替);

2)估計這50名乘客的候車時間少于10分鐘的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的傾斜角為,且經過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.

(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;

(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦點長軸長.

1)設直線交橢圓兩點,求線段的中點坐標.

2)求過點的直線被橢圓所截弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點.

1)求證:平面PAD

2)若,求直線EF與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于方程為的曲線給出以下三個命題:

1)曲線關于原點對稱;(2)曲線關于軸對稱,也關于軸對稱,且軸和軸是曲線僅有的兩條對稱軸;(3)若分別在第一、第二、第三、第四象限的點,都在曲線上,則四邊形每一條邊的邊長都大于2;

其中正確的命題是(

A.1)(2B.1)(3C.2)(3D.1)(2)(3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视